

SYST 101: Intro to Systems

Lecture 16

Mar. 20, 2002

C. Wells, SEOR Dept.

Announcements

Agenda

- Dr. Kathy Laskey (SEOR) on the department curriculum
- Modeling Initial Concepts

Modeling

- What do we mean when we say "model"?
- Models:
 - Plastic airplanes
 - Mental models
 - Simulations
 - Scale models
 - Test models

Model - Definition

- A model is a representation of some entity.
- The entity does not have to actually exist.
- The model itself does not have to have physical existence.

Modeling - Purpose

- We build models to
 - Describe the entities they represent
 - Learn about the entities they represent,
 - Learn how the entities interact
 - Have fun!
 - Others (too numerous to mention)

Forms of Models

- Mental models
 - how you conceive of something
 - how you perceive something
- Physical models
 - to describe
 - to predict or validate behavior
- Mathematical models
 - to understand behavior
- Others (too numerous to mention)

Examples

- Model airplane
- Sculpture
- Drawings (pictures, sketches, blueprints, etc.)
- Equations
- Ideas
- Plans?
- Functional Flow Block Diagrams?

Why Use Models

- Because the entity
 - does not have to exist
 - is too complicated to understand
 - is too costly to build unless it works
 - is too dangerous to use until we understand it

Models Are Scalable

- How detailed must a model be?
 - It depends on the use
- What kind of model should be used?
 - It depends on the use
- You can do a cost/benefit analysis of the information gained (benefit) versus the type/detail of the model (cost)

WARNING!

- Models are not reality
 - They represent reality
 - They are simplistic
 - They are erroneous (but may be good enough)
- The problems we encounter in system engineering are really problems in the adequacy of our models

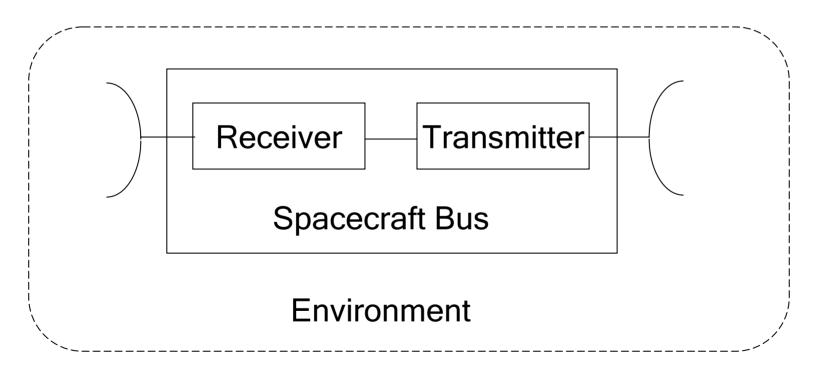
SEVERE WARNING

- System engineers live in the world of models more than in the real world
 - corollary: All engineers live in the world of models more than in the real world
- You may start to believe the model is the the real thing
 - The important thing is the entity the model represents (even for the model makers)

EXTREME WARNING

- Use the models to understand the entity they represent, but --
 - Models are always in error
 - Models may not be good enough
 - Trust real performance over your model
- Manufacturers and users tend to live in the real world and not in a model world

Model Verification


- Models may need to be verified if their accuracy is questionable
 - Too simplified
 - Design far from the existing practice
 - Design close to failure
- The design may require Qualification if the accuracy of the model is questionable

System Design Using Models

- Design a satellite to relay communications
- Conceptual (first guess) model

Typical Models in SC Design

- Element performance models
- Black box models
- Concept demonstration models
- Launch environment models
- Finite element mechanical models
- Qualification models
- Orbital mechanics models
- Space environment models
- Propagation models

Assignments

- Reading
 - None today.
- Homework (due next class)
 - Give examples of 5 models to include
 - Form
 - Purpose