

SYST 101: Intro to Systems

Lecture 17

Mar. 25, 2003 C. Wells, SEOR Dept.

Syst 101 - Lec. 17

C. Wells/M. Bienvenu Spring 2003

Slide 1

Announcements

- Remaining Semester Schedule
 - Mar 27 lecture 18
 - Apr 1, 3 lecture 19, 20
 - Apr 8, 10
 Project 2 laboratory testing
 - Apr 15, 17 lecture 23, 24
 - Apr 22, 24 Project 2 demos and oral presentations
 - Apr 29, May 1 Review for final
 - May 2

– May 13

SYST 490/495 presentations Final Exam 10:30 – 1:15

C. Wells/M. Bienvenu Spring 2003

Announcements cont.

- Central Module lab open most evenings.
 - There are almost always graduate students there.
 - Front door should be open till 9 pm.
 - Course is set up halfway.
 - Arrangements can be made for weekends.
 - But contact me or Ning during the week.

Agenda

• Models (cont)

Model - Definition

- A model is a representation of some entity.
- A model can be an entity
- The entity does not have to actually exist.
- The model itself does not have to have physical existence.

WARNING!

- Models are not reality
 - They represent reality
 - They are simplistic
 - They are erroneous (but may be good enough)
- The problems we encounter in system engineering are really problems in the adequacy of our models

Creative Tasks

- Most creative tasks are involved in making models
 - Models are the first guess
 - Refined models are the result of analysis, interpretation and revision
- Always the question of adequacy of the model

Engineering is ---

- a creative process
- usually involved in making models of things for others to make
- not usually involved with making things
 Technicians and manufacturers make things

Two Flavors of Models

- The "pre-reality" model
 - exists before an entity
 - used in creating an entity
 - used in understanding a hypothetical entity
- The "post-reality" model
 - exists after the entity exists
 - used in understanding a real entity

Adequacy

- The problem of adequacy is exposed when we attempt to make the "entity"
 - The realized model does not match expectations
- The problem of adequacy is exposed when we attempt to model reality
 - The model's behavior does not match reality

Risk

- There is risk whenever we go between a modeled universe and the real universe
- Not just in engineering
 - Psychology
 - Interpersonal interactions
 - Artistic activities

Examples

- Mental models
 - Evaluation of universe
 - Expectations of people
 - Behavior of people
 - System performance
 - Organizational performance
 - Communication
- We constantly create and modify mental models based on our experiences

Examples (cont.)

- Physical models
 - Descriptive
 - Evaluation
- Mathematical models
- Linguistic models

Communication

- Concepts are our mental models

 The problem is transferring them to others
 Models can represent concepts
- Books
 - Fiction and non-fiction
- Plans
 - Schedules
 - Blue prints

Understand Where You Stand

- Engineers live largely in a model world
 - We are "knowledge" workers
 - Our concepts, analysis, and interpretation are all model based
 - We use "models" to communicate our "knowledge" work to others
- Others usually make the models into real entities

What Is Reality

- A model represents an entity, but an entity can be a model
- Knowledge workers can be confused
 - For knowledge workers, your concepts (models) are what they hire you for
 - but their representations (models) are the products (entities) they get
 - Will an implementation (reality) perform as expected?

Assignments

- Reading
 - Petroski, Invention by Design Chapters 8 & 9
 - "Water and Society"
 - "Bridges and Politics"
- Homework
 - none