

SYST 101: Intro to Systems

Lecture 6

Feb. 6, 2002 C. Wells, SEOR Dept.

Syst 101 - Lec. 6

C. Wells/M. Bienvenu Spring 2002

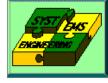
Slide 1

Announcements

- INCOSE International society of systems engineers. Publishes the journal System Engineering.
 - Student membership forms available in the SEOR Dept. office.

Announcements 2

- Lego Competitions
 - INCOSE is sponsoring a Lego robot competition. Robot competition, may be like "BattleBots." The Dean has decided that there will be a Systems Engineering GMU team present.
 - Volunteers?



Announcements 3

- Feb 20 will be a Laboratory day

 final design and checkout of Project 1
- Mar 4 will be a review day
- Mar 6 will be the Midterm Exam

Agenda

- Objective for Today
 - Additional Project 1 Information
 - Pair Wise Comparisons
 - Utility Curves

Homework Discussion

- Completion of Mindstorm demo?
 Everybody loaded the software?
- Anyone need extra parts?

Cost of Parts

- Excel file will be posted on course website.
- Need to download a copy and fill it in with the quantities of parts you use in your robot.
 - This will be used to determine the "cost" of your project.

Grading of Project 1

- 4 teams on Feb 24, 5 teams on Feb 26
 - Robot performance
 - Oral presentation (and questions)
 - Documentation package
 - Peer evaluations
- Relative weights are TBD
- 15 minutes for each team

Project 1 Test Schedule

Feb 25	Feb 27
12:15-12:30	12:00-12:15
12:30-12:45	12:15-12:30
12:45-1:00	12:30-12:45
1:00-1:15	12:45-1:00

1:00-1:15

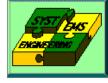
Robot Performance

- Accuracy of each circle diameter 25

 (full credit if circle within 6 inches of requested size)
- Repeatability of circle
 20
- Robot stability (doesn't fall apart) 10
- On schedule 20

Oral Presentation

- Style and level of detail (10 min max)
- Content
 - System engineering approach used
 - Member roles and division of work
 - Design of the robot
 - Architecture
 - Cost
 - Tests performed on the robot
 - Lessons Learned
 - What to do and not do next time



Documentation Package

- Data supporting oral presentation
- Detailed description of the robot
 - How to build it
 - How to control it
- Cost information
 - Information only
 - Do not optimize robot for cost

Peer evaluations

- Use form on next slide
- Used to determine the relative contribution of each member to the team's progress.
- For each square, ask "did X contribute more to our project than Y?"
- 1=yes, 0=no

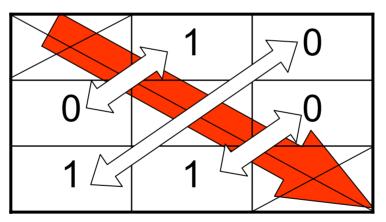
Pair Wise Comparison

YOU	Barney	Fred	Wilma	Jane
Barney		B > F?	B > W?	B > J?
Fred	F>B?		F > W?	F > J?
Wilma	W>B?	W>F?		W > J?
Jane	J>B?	J>F?	J>W?	

C. Wells/M. Bienvenu Spring 2002

Filled Evaluation Matrix

YOU	Barney	Fred	Fred Wilma	
Barney		1 (yes)	0 (no)	1
Fred	0		0	1
Wilma	1	1		1
Jane	0	0	0	


C. Wells/M. Bienvenu Spring 2002

Rules for Completing

• Matrix shows a kind of symmetry about the major diagonal:

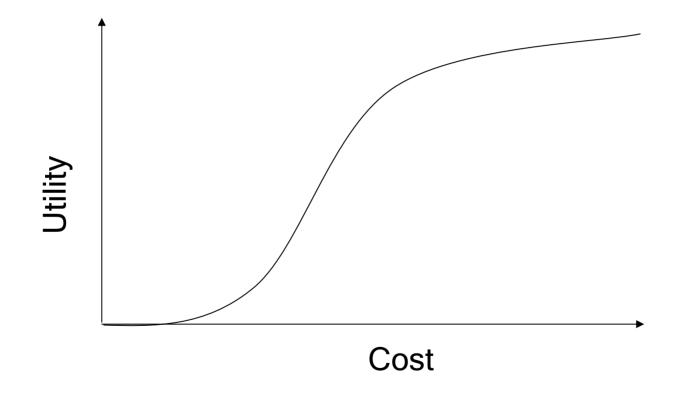
• If one entry is 1, the other must be 0. (If A does more than B, then B must have done less than A.

Member Evaluation

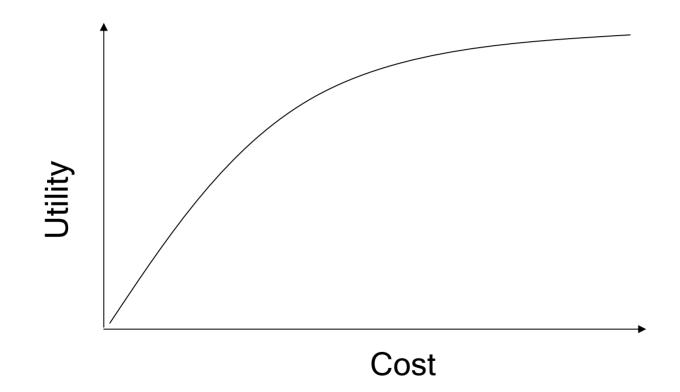
• Total along the rows:

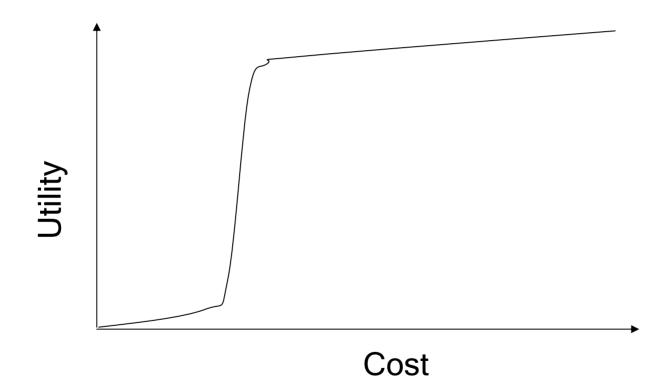
YOU	Barney	Fred	Wilma	Jane	$\Sigma =$
Barney		1 (yes)	0 (no)	1	2
Fred	0		0	1	1
Wilma	1	1		1	3
Jane	0	0	0		0

C. Wells/M. Bienvenu Spring 2002


Scoring Process

- Each team member will fill out an evaluation sheet.
 - Privately, without consultation
- I will total the final scores for the group
- Results in relative scoring for each team member.
 - Minimum: 0 points
 - Maximum: (n-1)(n-2) points, where n = number of members in your group.


Utility Curves and Optimization


Utility Curves and Optimization

Utility Curves and Optimization

Assignments

- Reading
- Homework