
OR 541 Spring 2007
Lesson 11-1, p. 1

Consider This Set Covering Problem

ix
xxx
xx

xx
xx

xxxx
xxxxxxz

i allfor }1,0{
1
1
1
1
1subject to

252 min

632

63

42

31

5421

654321

∈
≥++
≥+
≥+
≥+
≥+++

+++++=

I claim I can solve this by inspection

OR 541 Spring 2007
Lesson 11-1, p. 2

Now I Start Throwing Things Away ...

The first and last
constraints are

redundant – why?

x3 can be set to 0 -
why?

ix
xxx
xx

xx
xx

xxx
xxxxxxz

i allfor }1,0{
1
1
1
1
1subject to

252 min

632

63

42

31

521

654321

∈
≥++
≥+
≥+
≥+
≥++

+++++=

ix
xxx
xx

xx
xx

xxx
xxxxxxz

i allfor }1,0{
1
1
1
1
1subject to

252 min

632

63

42

31

521

654321

∈
≥++
≥+
≥+
≥+
≥++

+++++=

Answer: x1 = 1, x2 = 1, x6 = 1, z = 4

OR 541 Spring 2007
Lesson 11-1, p. 3

Presolve and Node Reductions

• An important feature of commercial codes is presolve
• Looks at problem structure, particularly binary variables
• Uses various techniques to reduce the problem
• Can be applied at any node in a branch-and-bound tree

• These techniques are responsible for much recent
improvement in MIP codes

• Following is a (partial) set of rules for cover (>=) and
partition (=) problems
• Note: can covert a pack to a partition by adding slack variables
• Then, use the rules for a partition
• These rules assume the Ci’s are all > 0

OR 541 Spring 2007
Lesson 11-1, p. 4

M

M

1,10101110
1,10001000
1,10101100

=≥
=≥
=≥

• (1) (cover, partition): If all Aij’s are 0 in row i, the
problem’s infeasible

• (2)(cover, partition) If row i has 1 nonzero Aij (say, Aik),
then set xik = 1, delete column k, and delete all rows r
with Ark = 1

Reduction Rules

1000000partition
1000000cover

=
≥

k
cover

partition

OR 541 Spring 2007
Lesson 11-1, p. 5

More Reduction Rules

• (2a) (partition) In addition to the row deletions in (2),
delete every column where Atj = Atk = 1, j <> k, for
every row r deleted

• (3) (cover, partition) If Arj >= Aij for all j for rows r and
i, delete row r

M

M

10101110
10001000
10101100

=
=
=

0000110)(
1000111)(

i
r

Variable for this
column = 1,

forces all
others to 0

OR 541 Spring 2007
Lesson 11-1, p. 6

• (3a) (partition) As in (3), but also delete all columns
with Ark = 1 and Aik = 0

• (4) (cover,partition) If S is a set of columns, and

then, delete column k

0000110)(
1000111)(

M

M

i
r

Yet More Reduction Rules

k
Sj

j

ik
Sj

ij

CCSk

iAA

≤∉

=

∑

∑

∈

∈

 and ,

, allfor

One of these
variables will
be = 1, forces
all others to 0

OR 541 Spring 2007
Lesson 11-1, p. 7

Last of the Reductions

• Reduction (4) :

• Reduction (4a) (cover) as in (4), but with condition

0100003row
1110102row
1010011row
1011242obj

iAA ik
Sj

ij allfor >∑
∈

OR 541 Spring 2007
Lesson 11-1, p. 8

Example: Winston p. 477, ex. 5 (cover)

1100106row
1110005row
0111004row
0011003row
1000112row
0000111row

Rule 3: Delete row 2
(covered by row 1)

Rule 3: Delete row 4
(covered by row 3)

OR 541 Spring 2007
Lesson 11-1, p. 9

Example (cont’d)

• No more reductions, but can you solve the problem?

• x2 = 1, x4 =1

1100106row
1110005row

0011003row

0000111row

OR 541 Spring 2007
Lesson 11-2 p. 1

Strong Versus Weak Formulations

• An example from my past:
• Job was associated with an airlift analysis
• Had 100 possible onload locations in the U.S.
• Needed to reduce locations to 10-20; all cargo from other

locations would go to one of the chosen “hubs”
• Wanted to minimize total tonnage*distance to move cargo to

hubs
• Known as a “k-median” problem

• First used a heuristic on the problem
• Was learning GAMS at the time, so I set it up as an
integer program

OR 541 Spring 2007
Lesson 11-2 p. 2

The First K-Median Formulation

• Indicies
• i,j = locations

• Data
• STONSi = short tons to be moved from location i
• DISTij = distance between i and j
• MAXHUBS = maximum number of hubs
• NUM = total number of locations

• Variables
• assignij = 1 if location i assigned to hub j, 0 otherwise
• choosej = 1 if location j chosen as a hub, 0 otherwise

OR 541 Spring 2007
Lesson 11-2 p. 3

The First Model

• Objective and constraints:

jchoose

i,jassign

jchooseNUMassign

MAXHUBSchoose

iassign

assignSTONSDISTz

j

ij

j
i

ij

j
j

j
ij

ij
ijiij

 allfor }1,0{

 allfor }1,0{

 allfor *

 allfor 1

subject to

**min

∈

∈

≤

≤

=

=

∑

∑

∑

∑
What do these

constraints do?

What does this
constraint do?

What do these
constraints do?

OR 541 Spring 2007
Lesson 11-2 p. 4

No Luck

• Tried to solve this in OSL
• Still didn’t meet integrality gap requirements after 100,000

iterations
• Ran for several hours
• No progress
• Went back to heuristic, wondered what I did wrong

• Asked an optimization professor a year later at a
meeting
• He sent back an answer the next day
• His change allowed OSL to solve the problem in about 10

seconds
• What was it?

OR 541 Spring 2007
Lesson 11-2 p. 5

A Stronger Formulation

• All he suggested was the following:

• Note that this increased the number of constraints by
100 x 100 - 100 = 9900

• How could it be so much faster?

jchoose

i,jassign

jichooseassign

MAXHUBSchoose

iassign

assignSTONSDISTz

j

ij

jij

j
j

j
ij

ij
ijijij

 allfor }1,0{

 allfor }1,0{

, allfor

 allfor 1

subject to

**min

∈

∈

≤

≤

=

=

∑

∑

∑

OR 541 Spring 2007
Lesson 11-2 p. 6

0

1

2

3

4

5

0 1 2 3 4 5

x1

x2

With MIPs, More Constraints Are Better

• The first formulation
encouraged
“fractionation” of the
binary variables

• The second cuts off
many possible
fractional solutions

• Want to get as close to
the “integer hull” as
possible

LP Feasible
Region

OR 541 Spring 2007
Lesson 11-2 p. 7

Another Strengthening Example

• From the mining example:

• A stronger set of constraints:
M

32

21

1,

.,.

5, allfor

ii

ii

tiit

oo

oo

ge

tioo

≥
≥

<≥ +

M

32

51

41

31

21

',

.,.

',5, allfor

ii

ii

ii

ii

ii

tiit

oo

oo

oo

oo

oo

ge

tttioo

≥
≥
≥
≥
≥

><≥

OR 541 Spring 2007
Lesson 11-2 p. 8

Cuts

• See Winston, Sec. 9-8
• Note that branching requires solving two LPs

• One for the integer floor of the branching variable
• One for the integer ceiling of the branching variable

• An alternative approach is called a cut
• The idea here is to “cut off” the fractional solution, but don’t cut

off any feasible integer solutions
• The aim is to generate constraints that form the integer hull of

the feasible region
• Such constraints are called facets

OR 541 Spring 2007
Lesson 11-2 p. 9

From the Dual Simplex Lesson (6-1)

• Recall this was the optimal (fractionated) tableau:

• Row 2 can be written as:

• In Lesson 6-1, I used this row (called a source row) to
generate a mysterious constraint; how did I do that?

Row z x1 x2 s1 s2 RHS BV
0 1 0 0 2/5 9/5 44/5 z
1 1 0 -2/5 1/5 4/5 x1
2 0 1 1/5 -3/5 8/5 x2

5

8

5

3

5

1
212 =−+ ssx

OR 541 Spring 2007
Lesson 11-2 p. 10

Generating a Gomory Cut

• We rewrite this constraint by recognizing that any
fraction can be written as

• So, applying this to Row 2, we get:

• Now, group the integral terms on the left and the
fractional terms on the right:

 +=

 +−+

 ++
5

3
1

5

2

5

1
0 22112 ssssx

 10, <<+= ffxx

5

3

5

2

5

1
10 21212 +−−=−−+ ssssx

Part we would like to get rid of

OR 541 Spring 2007
Lesson 11-2 p. 11

Some Arguments

• For integer feasibility:
• The left-hand side must be integer
• Therefore, the right-hand side must be integer
• s1 and s2 must be >= 0

• So, what’s the biggest the right-hand side can be and
still be feasible?

• Result: we add the cut:

• Is this cool, or what?

5

3

5

2

5

1

or ,0
5

3

5

2

5

1

321

21

−=+−−

≤+−−

sss

ss

OR 541 Spring 2007
Lesson 11-2 p. 12

More Info on Cuts

• Cutting plane algorithms had a bad reputation early
• Algorithms only added one cut at a time
• Had very slow convergence

• Have recently become very popular
• No reason to add cuts one at a time
• Can add a cut for virtually any fractional row
• Can combine with branch-and-bound (branch on one variable,

generate cuts for others)
• Easy to implement, run very quickly

• Bixby article shows that installing these cuts in CPLEX
gives tremendous improvements

OR 541 Spring 2007
Lesson 11-2 p. 13

A (Very) Quick Tour of CPLEX MIP Switches

• For a small MIP or one known to be easy, you can
stick with the defaults

• For anything else, you should always set the
following:
• Time limit (p. 95): CPLEX has a huge default (100,000,000

hours, a bit longer than I’d wait)
• MIP strategy (p. 98): choose depth-first to emphasize

feasibility, others to search for better solutions
• Upper cutoff/lower cutoff (p. 106): if you have a solution, set

these to avoid unproductive parts of the b-b tree
• Relative/absolute gap (p. 106): a good starting relative gap is

0.10; absolute gap depends on the problem

OR 541 Spring 2007
Lesson 11-2 p. 14

CPLEX Switches You Can Play With

• Bound strengthening, coefficient reduction (p. 90)
• These are more aggressive prereduce options
• You should consider them if you have lots of binary variables

and “chains” of relationships

• MIP probing (p. 99)
• Explores implications of binary settings at every node
• Time consuming, but may crack the problem early

• Variable selection (p. 99)
• Strong branching is “probing lite” - can be very helpful
• Maximum infeasibility branching is useful if you have feasible

solutions and want to get faster improvement

OR 541 Spring 2007
Lesson 11-2 p. 15

CPLEX Cuts

• CPLEX can employ 9 different types of cuts
• Some are easy (like Gomory fractional cuts)
• Some involve substantial math (disjunctive cuts)
• Not easy to figure out a priori which will work

• Some general advice
• CPLEX is fairly intelligent on when to apply cuts
• If you’re really having trouble, go aggressive on everything

(kitchen sink approach)
• Bixby’s article gives good statistics on general performance of

cuts on a large suite of MIPs
• Clique cuts good for partition problems; cover cuts good for

covers
• Implied bound cuts good for problems with lots of general

integer variables

OR 541 Spring 2007
Lesson 11-2 p. 16

Conclusion

• Be prepared for a lot of work with a big MIP
• Exploit as much problem structure as you can
• Use strong formulations; when in doubt, add more constraints
• Help the solver with cutoff values and branch priorities
• First get a feasible answer , then work from there

• Once you’re feasible, work on improvement
• Throw more switches to drive down the integrality gap
• Recognize that some problems have “loose” LP formulations

and require very long b-b solves to tighten the gap
• Pay close attention to the structure of the interim feasible

solutions
• Add more constraints if you see opportunities (like the

NOSWOT problem)

OR 541 Spring 2007
Lesson 11-3 p. 1

Constraint-Satisfaction Problems (CSPs)

• Sometimes we just want to find a feasible solution
• Map-coloring problem:

• assign colors to maps so no adjacent countries have the same
color

• Stable marriage problem
• Have a group of N men, and a group of N women
• Each woman has rated the men 1-N, as have each of the men
• Assign men to the women so that if Man A prefers Man B’s

wife, Man B’s wife prefers her husband to Man A

• Scene labeling
• Recognize 3-D objects by assigning lines in 2-D drawings

OR 541 Spring 2007
Lesson 11-3 p. 2

The Idea of Constraint Programming

• Basic algorithm
• You have a set of variables, each with a finite domain
• You have a set of constraints that determine allowable settings

on combinations of variables
• Successive applications of those constraints reduce the

domains of the variables
• Stop when you come up with variable settings that satisfy all

constraints

• Several commercial products, such as ILOG’s OPL,
provide a language for constraint programming

OR 541 Spring 2007
Lesson 11-3 p. 3

Integer Programming for CSPs

• In some cases, we can write integer programs to solve
CSPs

• Consider SuDoKu
• Problems consist of a 9 x 9 grid
• Have to assign numbers 1-9 so that each row, column, and the

9 3 x 3 subgrids contains each number exactly once

• How do you solve these manually?
• Chances are, you use your own version of constraint
programming

OR 541 Spring 2007
Lesson 11-3 p. 4

The Challenge

• Formulate an integer
program in MPL to solve
the SuDoKu problem
shown to the right

• Furthermore, SuDoKu
puzzles are advertised
to have a single solution

• Does this one have a
single solution? Modify
your formulation to find
out

7 3 1

6 8 4 3

5 8

2 8

2 1 6

6 9

5 1

6 3 5 4

2 7 9

