
OR 541 Spring 2007
Lesson 12-1 p. 1

Intro to Nonlinear Optimization

• We now relax the proportionality and additivity
assumptions of LP

• What are the challenges of nonlinear programs (NLP’s)?
• Objectives and constraints can use any function:

• Feasible region is not guaranteed to be convex
• Optima may not occur at extreme points
• May be many “local” optima; may not be possible to determine 

the “global” optimum
• No general-purpose algorithm suits all problems
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Example: Nonlinear Warehouse Location

• Warehouse location
• Suppose we want to locate a set of warehouses
• Let i = warehouses, j = markets
• Data: 

• Ci = capacity of warehouse i
• Rj = demand in market j
• (aj, b j) location of market j in (x,y ) coordinates

• Variables
• (x i, y i) = location of warehouse
• d ij = distance from warehouse i to market j
• w ij = units shipped from warehouse i to market j
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Warehouse Location Formulation

• One formulation is:

• The objective function and the distance constraints are 
nonlinear
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Min Cost Network Congestion Problem

• Here’s something that looks like a MCNFP, but with a 
nonlinear twist:

• What does the nonlinear objective function do?
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Attacking a Nonlinear Problem

• So, nonlinear problems can be nasty
• Need to consider:

• The form of the objective function; how pathological is it?
• The form of the feasible region; in particular, is it convex? If not, 

then you’ll have to search local optima

• Some modeling advice
• In general, life is easier if you can restrict the nonlinearity of the 

problem to the objective function
• Spreadsheet solvers allow you to define arbitrary nonlinear 

problems, and they do give solutions - but BE CAREFUL OF 
THE SOLUTION!

• There is no “one size fits all” approach to NLPs; various 
heuristics (simulated annealing, genetic algorithms) sound 
cool, but they still heuristics



OR 541 Spring 2007
Lesson 12-1 p. 6

Convex Sets and Convex Functions

• Recall that a set S is convex if: 
• x1 and x2 are elements of S, then (1-c)x1 + cx2 is also in S, for 

0 <= c <= 1
• Knowing whether the feasible region is convex helps analyze a 

nonlinear problem

• Another important part of nonlinear optimization are 
convex functions 

• A function f is convex on a convex set S if, for any x1
and x2 in S:

• Note that x1 and x2 can be either scalars or vectors
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Convexity, Concavity

• A function is concave if the reverse inequality holds:

• Winston (p. 631) shows the difference in 2-d; 
essentially, a function f is concave if -f is convex

• Why do we care about this? 
• BECAUSE:

• If the feasible region of a maximization NLP is convex and the 
objective function is concave, any local optimum is also the 
global optimum (Theorem 1, p. 632)

• If the feasible region of a minimization NLP is convex and the 
objective function is convex, any local optimum is also the 
global optimum (Theorem 1’, p. 632)
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Proving a Function is Convex/Concave

• For functions of a single variable, we use calculus:
• If f’’(x) >= 0 for all x in a convex set S, f is convex 
• If f’’(x) <= 0 for all x in a convex set S, f is concave

• For multivariate functions f(X), this is a bit more difficult
• There are some rules:

• (1) A linear combination of convex (concave) functions is 
convex (concave):

• (2) If f is a concave function and > 0 on S, then the following 
function is convex:

• (3) If f is a nondecreasing, univariate convex function, and h is 
a convex function, then the following is convex:
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Proving Concavity/Convexity; Hessians

• Rules (cont’d)
• If f is a convex multivariate function, then the following, where A is 

a matrix and b a vector, is also convex:

• If f has continuous second derivatives on S, and its Hessian matrix 
is positive semidefinite for all points in S, then f is convex

• If f has continuous second derivatives on S, and its Hessian matrix 
is negative semidefinite for all points in S, then f is concave

• So:
• What’s a Hessian (if it’s not a German mercenary)?
• What’s it mean to be positive or negative semidefinite?
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Hessian Matrices

• If the function has continuous second derivatives on S, 
we can analyze a thing called the “Hessian”

• This is the multivariate analog of a second derivative; 
the Hessian H(x) of a function f(x1, x2, … xn) is:
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Positive and Negative Semidefiniteness

• A Hessian matrix is positive semidefinite if, for any x* 
in a set S:

• A Hessian matrix is negative semidefinite if, if, for any 
x* in a set S:

• So, semidefiniteness determines whether the function 
is convex or concave

• NOTE: since f is concave if -f is convex, I will only talk 
about convexity from now on
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Testing for Positive Semidefiniteness

• Exclusionary rules: suppose H is an n-dimensional 
Hessian matrix with elements h ij. Then:
• If any diagonal element is < 0, H isn’t positive semidefinite
• If a diagonal element h ii = 0, then row i and column i must also 

be 0, or else H is not positive semidefinite

• Principal minors:
• A “principal minor” of an n x n matrix is the i x i matrix you get 

from deleting n-i rows and columns of H
• If the determinants of all principal minors of H are all >= 0, then 

H is positive semidefinite

• Now we have some tests; let’s try some examples
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Examples of Convexity/Concavity Testing

• First example:

• This matrix has 3 principal minors; the entire matrix, 
and the two diagonal elements

• The determinants of the principal minors are -4, -6, 
and (-4 x -6) - (4 x 4) = 8

• It’s not positive semidefinite; however, - H is! 
Therefore, it’s negative semidefinite, and the function’s 
concave
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Another Example

• Here’s where a function is positive semidefinite only in 
a particular region:

• The determinants of the principal minors are 6x1, 4, 
and 24x1

• This function is positive semidefinite, and convex, only 
if x1 >= 0
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Some Miscellanea About Definiteness

• If H is an n x n matrix:
• The “characteristic equation” of H is

• The λ’s are called the “eigenvalues” of H
• If they are all >= 0, H is positive semidefinite; if they are all <= 

0, H is negative semidefinite

• This is another way to test, if you can compute the 
eigenvalues easily

• A couple of good references:
• Linear Algebra and Its Applications (Gilbert Strang)
• Calculus (K. G. Binmore; this is very good, and unique, book)

0=− IH λ
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Multivariate Unconstrained Optimization

• This is Sec. 12-5 of Winston
• The basic problem is to:

• We’re assuming that f has continuous first and second 
partial derivatives

• For an univariate function, we know candidate critical 
points occur where f’(x) = 0

• The same argument applies to multivariate functions
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Gradients

• The gradient of a function f is a vector of the first 
partial derivatives:

• We’re looking for points where the gradient vector is 0
• Example:
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Critical Points

• When we look at these equations, we find that:
• Either x1 = x2 or x1 = -x2 (first equation)
• Either x2 = 0 or x2

2 = 1.5x1 (second equation)
• So the 3 possible points are (0,0), (1.5,1.5), and (1.5,-1.5)
• Think about the above … do you see the argument?

• Now we have to test these points using the Hessian
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Rules for Testing with a Hessian

• Here’s a slightly different summary of Winston 
• Suppose x* is a critical point

• If the determinant of H(x*) = 0 , the test is inconclusive 
(useless)

• If the determinant of H(x*) > 0 , and all the principal minors are 
> 0, then x* is a local minimum

• If the determinant of H(x*) < 0 , the signs of the “even”
principal minors are > 0, and the signs of the “odd” principal 
minors are < 0, then x* is a local maximum

• If the determinant of H(x*) <> 0 and the other tests fail, x* is a 
“saddle point”
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Testing the Points in the Example

• At (0,0): 
• H(x) = 0
• The test is useless

• At (1.5, 1.5):
• The determinant of the entire matrix is 81 > 0
• The diagonal elements are 9 and 27, both > 0
• This point is a local minimum

• At (1.5, -1.5):
• As before, the determinate of the entire matrix is 81 > 0
• The diagonals are 9 and 27, both > 0
• This point is also a local minimum
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The Function in 3-D
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A 2-D Slice
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What Happens If We Try This in MPL?

• Here’s the MPL code for this problem
• Note there’s no constraints
• The “OPTIONS” statement tells MPL it’s nonlinear

• CONOPT reports the point (0,0) is the min

INDEX
i := 1..2;

OPTIONS
ModelType=nonlinear;

FREE VARIABLES
x[i];

MODEL
min z =  x[1]^3 - 3*x[1]*(x[2]^2) + x[2]^4;

END
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Now, Add Some Constraints

• Let’s look around for more critical points; add

• Now CONOPT says the min is (1.5, 1.5)
• Try for the third critical point:

• CONOPT says the min is (1.5, -1.5)

SUBJECT TO
x[1] > 0.1;
x[2] > 0.1;

SUBJECT TO
x[1] > 0.1;
x[2] < -0.1;
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Last Experiment

• What happens for:

• CONOPT reports problem is unbounded
• Why didn’t it tell us this for the unconstrained case?
• Looking at the function, setting x2 = 0 allows x1

3 to go to 
positive or negative infinity 

• Is the solver screwed up?

SUBJECT TO
x[1] < -0.1;
x[2] < 0;
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Moral(s)

• This is the overarching lesson with nonlinear optimization
• If the objective or constraints are nonconvex, you will get local 

optima
• You should figure this out before you start
• You have to have some way of finding multiple local optima; 

putting in bounds as in the example is a cheap, fast way

• Commercial nonlinear solvers generally work as follows:
• They find an initial feasible point
• They solve a local linear approximation of the problem to find an 

improving direction and a “step size”
• They step along the improving direction, maintaining feasibility
• They then repeat the procedure until they find a local optimum
• The responsibility to check the solution is YOURS
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Nonlinear Problems w/ Equality Constraints

• We now begin to introduce constraints to nonlinear 
problems

• The general form is:
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From Calculus: Lagrange Multipliers

• Consider the following problem:
•

• Translation: find the largest rectangle that can be inscribed in an 
ellipse with major and minor axes of 4 and 3, respectively

• Way back in calculus, we formed the following function:

• The new function is the Langrangean, and the new 
variable is a Lagrange multiplier
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Some Arguments

• We now maximize the (unconstrained) Lagrangean
function:

• What is this, and why does it work?
• Some functional arguments:

• The term we have added to the objective is essentially a 
penalty term

• Any solution that does not have points on the ellipse penalizes 
the objective (depending on what the Lagrange multiplier value 
is)

• Does this look similar to complementary slackness?
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Lagrange’s Theorem

• Here’s what makes this go:
• Let functions f and g have continuous first partial derivatives
• Also, let f have an extremum at the point (x1*, x2*, … , xn*) on 

the constraint function g(x1, x2, … , xn) = c

• If g (x1*, x2*, … , xn*) <> 0, then there is a real number, λλλλ, such 
that:

• This theorem says that the objective function and 
constraint gradients are parallel at the optimal point

• Consequently, the constraint is tangent to the objective 
at the point 
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The Method of Langrange Multipliers

• Convert the problem to an unconstrained one 
• Form the Lagrangean function
• Each equality constraint requires a separate Lagrange 

multiplier

• Find the critical points of the Lagrangean
• Take the partial derivative with respect to each variable
• Set the resulting equations to 0; solve for critical points

• Test each critical point to determine the optimum
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Back to the Example

• The Lagrangean function was:

• The partials (set equal to 0) are:
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The Finale

• I won’t show the algebra here, but you would:
• Solve for λλλλ in the first equation
• Substitute that into the second equation, so you are left with an 

equation in x and y
• Substitute that into the third equation, eliminate x, solve for y
• Solve for x; don’t bother to compute λλλλ

• This only has one critical point

• (x*,y* ) =

• When we evaluate this in the original f, we get the area = 24
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So What Happens if Algebra Doesn’t Work?

• It may not be possible to solve the equations 
algebraically
• There are various numerical techniques available
• Covering them is beyond the scope of this course
• If you only have one Lagrange multiplier, you can just do some 

sort of line search (like bisection)

• What does MPL do with this?
• First try: CONOPT says “locally infeasible”
• Second try: change the constraint to <=; CONOPT says 

optimum is (0,0)
• Third try: add the constraints x > 1 and y > 1, CONOPT finds 

the optimum

• MORAL: use constraints to help find a starting point!


