Nonlinear Problems with General Constraints

- We now need to deal with inequality constraints
 - We can't convert all inequality constraints to equality constraints
 - We still have inequalities with the slacks and surpluses
- So, we will look at a more general problem:

Problem NLP:		Problem NLP:
max or min $f(x_1, x_2, \dots, x_n)$		max or min $f(\mathbf{x})$
subject to	OR	subject to
$g_1(x_1, x_2, \dots x_n) \le b_1$		$g(\mathbf{x}) \leq \mathbf{b}$
$g_2(x_1, x_2, \dots x_n) \le b_2$:		(vector form)
$g_{\mathrm{m}}(x_1, x_2, \dots x_n) \leq b_m$		

• Here, we convert all equalities to a pair of inequalities

The Karush-Kuhn-Tucker Conditions

- These are necessary and sufficient conditions for an optimal solution
 - Published by Kuhn and Tucker in 1951
 - Subsequently discovered that Karush had derived the conditions in his Master's thesis in 1939
 - Winston disenfranchises Karush, but I'm asserting his contribution
 - Consequently, we'll call these the KKT conditions
- Necessary versus sufficient
 - Necessary: have to meet these conditions, but meeting the conditions is not enough
 - Sufficient: if you meet these conditions, you've got it

KKT Necessary Conditions

- Warning: these are written differently in different texts
 - Winston does a good job, we'll stick with him
 - He also covers the variations
- If Problem NLP is a maximization, then the necessary conditions for a feasible **x*** to be optimal are:

$$\nabla f(\mathbf{x}^*) - \sum_i \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0} \quad (\text{vector form, n equations,} \\ \mathbf{x}_i [b_i - g_i(\mathbf{x}^*)] = 0 \text{ for all } i \\ \lambda_i \ge 0 \text{ for all } i \end{cases}$$

• If NLP is a minimization, then:

$$\nabla f(\mathbf{x}^*) + \sum_i \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0} \quad \text{(vector form)}$$
$$\lambda_i [b_i - g_i(\mathbf{x}^*)] = 0 \text{ for all } i$$
$$\lambda_i \ge 0 \text{ for all } i$$

OR 541 Spring 2007 Lesson 13-1 p. 3

Example

• Try this one:

min $z = 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$ subject to $x_1^2 + x_2^2 \le 5$ $3x_1 + x_2 \le 6$

• Necessary conditions:

$$\nabla f(\mathbf{x}) \qquad \begin{array}{l} 4x_1 + 2x_2 - 10 + 2\lambda_1 x_1 + 3\lambda_2 = 0 \\ 2x_1 + 2x_2 - 10 + 2\lambda_1 x_2 + \lambda_2 = 0 \end{array} \qquad \sum_i \lambda_i \nabla g_i(\mathbf{x}^*) \\ \lambda_1 \left(x_1^2 + x_2^2 - 5 \right) = 0 \\ \lambda_2 \left(3x_1 + x_2 - 6 \right) = 0 \\ \lambda_1, \lambda_2 \ge 0 \end{array}$$

OR 541 Spring 2007 Lesson 13-1 p. 4

How Might We Solve This?

- Assume one of the constraints isn't binding
 - Try it with the second constraint
 - This means that $\lambda_2 = 0$
 - It also means the first constraint is binding
- This reduces the equations to:

$$4x_{1} + 2x_{2} - 10 + 2\lambda_{1}x_{1} = 0$$

$$2x_{1} + 2x_{2} - 10 + 2\lambda_{1}x_{2} = 0$$

$$x_{1}^{2} + x_{2}^{2} = 5$$

$$\lambda_{1} \ge 0$$

- After much tedious algebra: $\mathbf{x}_1 = 1$, $\mathbf{x}_2 = 2$, $\lambda_1 = 1$
- How do we know if this is optimal?

KKT Sufficient Conditions

- These are Winston's Theorem 11 and 11' (p. 674)
 - If Problem NLP is a *maximization*, and *f* is concave, and all the *g*'s are convex, and *x** satisfies the necessary conditions, *x** is optimal
 - If Problem NLP is a *minimization*, and *f* is convex, and all the *g*'s are convex, and *x** satisfies the necessary conditions, *x** is optimal
- Example objective function:

$$H_f(x) = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$$

- Determinants of principal minors are 4, 4, 16-4 = 12, all > 0
- Objective function is convex

Example Sufficient Conditions

• Testing the first constraint:

$$H_{g_1}(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

- Principal minors here are all > 0, so it's convex
- Third constraint is linear, so it is convex and concave
- Result: the point is optimal

Does Any of This Look Familiar?

• Suppose we have a typical LP (and its dual):

Problem LP : max cxProblem LPD : min wbsubject tosubject to $Ax \le b(w)$ $wA - u \ge c(x)$ $-x \le 0(u)$ $w, u \ge 0$

• Let's write the KKT necessary conditions for this:

$$c - wA + u = 0$$

 $w(b - Ax) = 0$
 $ux = 0$
 $w, u \ge 0$
DUAL FEASIBILITY
COMPLEMENTARY SLACKNESS

OR 541 Spring 2007 Lesson 13-1 p. 8

Moral(s)

- KKT necessary conditions are identical to LP optimality conditions
- Since an LP has a linear objective and constraints, it meets the sufficient conditions as well
- Consequently, LP is just a subset of NLP
- The multipliers in the KKT conditions (and Lagrangian methods) correspond to dual variables in LP
- Most NLP solution techniques exploit dual variables in some way

A Couple More Warnings About MPL

- MPL dislikes parenthetical expressions with variables
 - Example of an equation MPL refuses to parse:

$$\max z = \sqrt{S(S - x_1)(S - x_2)(S - x_3)}$$

• To get around this first recognize maximizing this is equivalent:

$$\max z' = S (S - x_1)(S - x_2)(S - x_3)$$

• Since S is a positive constant, we can get rid the first one:

$$\max z'' = (S - x_1)(S - x_2)(S - x_3)$$

• Finally, multiply out all the terms:

$$\max z'' = S^3 - S^2 x_1 - S^2 x_2 - S^2 x_3 + S x_1 x_2 + S x_1 x_3 + S x_2 x_3 + x_1 x_2 x_3$$

Final Proviso

- Note that the previous argument applied to objectives
- For constraints, you must be much more careful about determining equivalent forms
- In general, MPL forces you to multiply out nonlinear terms
- Other algebraic modeling language are NOT this restrictive

MPL/CONOPT Is Useful, Though

• Here's the MPL code for the example:

```
OPTIONS
   MODELTYPE=nonlinear;
VARIABLES
   x1, x2;
MODEL
   min z = 2*(x1^2)+2*x1*x2+x2^2-10x1-10x2
SUBJECT TO
   x1^2 + x2^2 < 5;
   3*x1 + x2 < 6;
END</pre>
```

• In this case, CONOPT gets the optimal answer directly

Quadratic Programming

- One group of nonlinear optimizations is straightforward to solve and has useful applications
 - Quadratic objective function
 - Linear constraints
 - Can be solved by simplex method (with some modifications)
- The general model:

min
$$z = cx + \frac{1}{2}xHx$$

subject to
 $Ax \le b$
 $x \ge 0$

• *H* must be positive semidefinite (negative semidefinite for a max problem)

Markowitz Mean-Variance Model

- This is a popular portfolio model
 - Have a collection of investments
 - Know their average historical return
 - Also know the variance and covariance of their returns
 - Objective is to minimize some combination of risk and return
- General model
 - Indices: *i,j* = possible investments
 - Data:
 - **BUDGET** = amount to invest
 - **RETURN** = desired average return at end of time horizon
 - **RET**_{*i*} = average return of investment *i*
 - **COV**_{ij} = covariance of return for asset **i** and **j**
 - Variables: \mathbf{x}_i = amount to invest in asset \mathbf{i}

Mean/Variance Model (cont'd)

• Formulation: min
$$z = \sum_{ij} COV_{ij} * x_i * x_j$$

subject to
 $\sum_{i} x_i = BUDGET$
 $\sum_{i} RET_i * x_i \ge RETURN$
 $x_i \ge 0$ for all i

- Some comments:
 - This minimizes variance for a specified return
 - A variance-covariance matrix is *always* positive-semidefinite, so you don't need to worry about that
 - Note that this minimizes variance in both directions (upside and downside)

Example

- From Markowitz (1959)
 - 3 stocks: ATT, GMC, USX
 - Average returns are 8.9%, 21.4%, and 23.5% respectively
 - Desired return: 15%
 - Covariance matrix:

	ATT	GMC	USX
ATT	0.01081	0.01241	0.01308
GMC	0.01241	0.05839	0.05543
USX	0.01308	0.05543	0.09423

 Let's see what happens with various settings of desired return

Results

Chart below shows the trade between return and variation:

OR 541 Spring 2007 Lesson 13-2, p. 5

Results (cont'd)

• Here's how the mix changes:

OR 541 Spring 2007 Lesson 13-2, p. 6

Constrained Regression

- This is another application of quadratic programming
- In a normal linear regression problem:
 - You have a set of responses (Y's) and a set of j predictors (X'i 's) for each Y
 - You speculate the relationship is of the form:

$$Y_i = \beta_0 X_{i0} + \beta_1 X_{i1} + \dots + \beta_n X_{in} + e_i$$

- However, you have to estimate the β 's (e_i is random error)
- The classical statistical approach is to minimize the sum of the squared differences:

$$\min z = \sum_{i} (Y_{i} - b_{0}X_{i0} - b_{1}X_{i1} - \dots - b_{n}X_{in})^{2}$$
$$= \sum_{i} Y_{i}^{2} - 2\sum_{ij} Y_{i}X_{ij}b_{j} + \sum_{ijk} X_{ij}X_{ik}b_{j}b_{k}$$

OR 541 Spring 2007 Lesson 13-2, p. 7

Constrained Regression (cont'd)

- Note the b's are the variables; X's and Y's are data
- Note also that it's equivalent to minimize:

$$\min z = -2\sum_{ij} Y_i X_{ij} b_j + \sum_{ijk} X_{ij} X_{ik} b_j b_k$$

- So why bother?
 - All spreadsheets and statistical packages do regression
 - The problem itself is an unconstrained quadratic optimization
 - We can solve it directly by differentiation
- This issue is that sometimes there may be constraints on the b's - for example:
 - Some must be nonnegative
 - Some must add to 1

Example

• Consider the following table:

Observation	Xi0	Xi1	Xi2	Yi
1	1	2	6	8
2	1	3	9	14
3	1	5	7	12
4	1	7	8	17
5	1	8	10	18

• We think the model is:

$$Y_{i} = \beta_{0}X_{i0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + e_{i}$$

• Classical regression solves this and gets:

Now, Add a Constraint

- Suppose that the b's must add to > 1.5
- Can't use classical regression anymore
- However, we can just add a constraint to a quadratic optimization: $\sum_{k=1}^{N} \sum_{k=1}^{N} \sum_{k=1}$

$$\min z = -2\sum_{ij} Y_i X_{ij} b_j + \sum_{ijk} X_{ij} X_{ik} b_j b_k$$

subject to

 $\sum_{i}^{s} b_{i} \ge 1.5$

- In this case, the answer changes to:
 - **b**₀ = -0.641
 - **b**₁ = 0.891
 - **b**₂ = 1.251

Solving Quadratic Programs in MPL

- Most LP solvers (like CPLEX) will solve quadratic programs
- Here's the code for the Markowitz problem:

```
INDEX
                                                  MODEL
                                                    MIN variance =
  i := (att,gmc,usx);
                                                        SUM(i,j: COV[i,j]*x[i]*x[i=j]);
  j := i;
OPTIONS
                                                  SUBJECT TO
 modeltype = quadratic;
                                                    budgetcon:
                                                      SUM(i: x[i]) = 1;
DATA
 RETURN = 1.20;
 RET[i] := (1.089,1.214,1.235);
                                                    retcon:
 COV[i,j] := (0.01081,0.01241,0.01308,
                                                      SUM(i: RET[i]*x[i]) > RETURN;
               0.01241,0.05839,0.05543,
               0.01308, 0.05543, 0.09423);
                                                  END
```

x[i];