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Nonlinear Problems with General Constraints

• We now need to deal with inequality constraints
• We can’t convert all inequality constraints to equality constraints
• We still have inequalities with the slacks and surpluses

• So, we will look at a more general problem:

• Here, we convert all equalities to a pair of inequalities
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The Karush-Kuhn-Tucker Conditions

• These are necessary and sufficient conditions for an 
optimal solution
• Published by Kuhn and Tucker in 1951
• Subsequently discovered that Karush had derived the conditions in 

his Master’s thesis in 1939
• Winston disenfranchises Karush, but I’m asserting his contribution
• Consequently, we’ll call these the KKT conditions

• Necessary versus sufficient
• Necessary: have to meet these conditions, but meeting the 

conditions is not enough
• Sufficient: if you meet these conditions, you’ve got it
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KKT Necessary Conditions

• Warning: these are written differently in different texts
• Winston does a good job, we’ll stick with him
• He also covers the variations

• If Problem NLP is a maximization, then the necessary 
conditions for a feasible x* to be optimal are:

• If NLP is a minimization, then:
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Example

• Try this one:

• Necessary conditions: 

63

5

 subject to

101022  min

21

2
2

2
1

21
2

221
2

1

≤+
≤+

−−++=

xx

xx

xxxxxxz

( )
( )

0,

063

05

021022

0321024

21

212

2
2

2
11

22121

21121

≥
=−+
=−+

=++−+
=++−+

λλ
λ
λ

λλ
λλ

xx

xx

xxx

xxx
)(xf∇ ∑ ∇

i
ii g *)(xλ



OR 541 Spring 2007
Lesson 13-1 p. 5

How Might We Solve This?

• Assume one of the constraints isn’t binding
• Try it with the second constraint

• This means that λλλλ2 = 0
• It also means the first constraint is binding

• This reduces the equations to:

• After much tedious algebra: x1 = 1, x2 =2, λλλλ1 = 1
• How do we know if this is optimal?
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KKT Sufficient Conditions

• These are Winston’s Theorem 11 and 11’ (p. 674)
• If Problem NLP is a maximization, and f is concave, and all the 

g’s are convex, and x* satisfies the necessary conditions, x* is 
optimal

• If Problem NLP is a minimization, and f is convex, and all the 
g’s are convex, and x* satisfies the necessary conditions, x* is 
optimal

• Example objective function:
•

• Determinants of principal minors are 4, 4, 16-4 = 12, all > 0
• Objective function is convex
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Example Sufficient Conditions

• Testing the first constraint:
•

• Principal minors here are all > 0, so it’s convex

• Third constraint is linear, so it is convex and concave
• Result: the point is optimal
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Does Any of This Look Familiar?

• Suppose we have a typical LP (and its dual):

• Let’s write the KKT necessary conditions for this:
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Moral(s)

• KKT necessary conditions are identical to LP 
optimality conditions

• Since an LP has a linear objective and constraints, it 
meets the sufficient conditions as well

• Consequently, LP is just a subset of NLP
• The multipliers in the KKT conditions (and Lagrangian
methods) correspond to dual variables in LP

• Most NLP solution techniques exploit dual variables in 
some way
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A Couple More Warnings About MPL

• MPL dislikes parenthetical expressions with variables
• Example of an equation MPL refuses to parse:

• To get around this first recognize maximizing this is equivalent:

• Since S is a positive constant, we can get rid the first one:

• Finally, multiply out all the terms:
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Final Proviso

• Note that the previous argument applied to objectives
• For constraints, you must be much more careful about 
determining equivalent forms

• In general, MPL forces you to multiply out nonlinear 
terms

• Other algebraic modeling language are NOT this 
restrictive
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MPL/CONOPT Is Useful, Though

• Here’s the MPL code for the example:

• In this case, CONOPT gets the optimal answer directly

OPTIONS
MODELTYPE=nonlinear;

VARIABLES
x1, x2;

MODEL
min z = 2*(x1^2)+2*x1*x2+x2^2-10x1-10x2

SUBJECT TO

x1^2 + x2^2 < 5;

3*x1 + x2 < 6;

END
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Quadratic Programming

• One group of nonlinear optimizations is straightforward 
to solve and has useful applications
• Quadratic objective function
• Linear constraints
• Can be solved by simplex method (with some modifications)

• The general model:

• H must be positive semidefinite (negative semidefinite for a 
max problem)
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Markowitz Mean-Variance Model

• This is a popular portfolio model
• Have a collection of investments
• Know their average historical return
• Also know the variance and covariance of their returns
• Objective is to minimize some combination of risk and return

• General model
• Indices: i,j = possible investments
• Data:

• BUDGET = amount to invest

• RETURN = desired average return at end of time horizon

• RETi = average return of investment i
• COVij = covariance of return for asset i and j

• Variables: x i = amount to invest in asset i
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Mean/Variance Model (cont’d)

• Formulation:

• Some comments:
• This minimizes variance for a specified return
• A variance-covariance matrix is always positive-semidefinite, 

so you don’t need to worry about that
• Note that this minimizes variance in both directions (upside and

downside)
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Example

• From Markowitz (1959)
• 3 stocks: ATT, GMC, USX
• Average returns are 8.9%, 21.4%, and 23.5% respectively
• Desired return: 15%
• Covariance matrix:

• Let’s see what happens with various settings of 
desired return

ATT GMC USX
ATT 0.01081 0.01241 0.01308
GMC 0.01241 0.05839 0.05543
USX 0.01308 0.05543 0.09423
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Results

• Chart below shows the trade between return and 
variation:
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Results (cont’d) 

• Here’s how the mix changes:
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Constrained Regression

• This is another application of quadratic programming
• In a normal linear regression problem:

• You have a set of responses (Yi’s ) and a set of j predictors 
(Xij ’s ) for each Yi

• You speculate the relationship is of the form:

• However, you have to estimate the ββββ’s (ei is random error)

• The classical statistical approach is to minimize the 
sum of the squared differences:
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Constrained Regression (cont’d)

• Note the b’s are the variables; X’s and Y’s are data
• Note also that it’s equivalent to minimize:

• So why bother?
• All spreadsheets and statistical packages do regression
• The problem itself is an unconstrained quadratic optimization
• We can solve it directly by differentiation

• This issue is that sometimes there may be constraints 
on the b’s - for example:
• Some must be nonnegative
• Some must add to 1
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Example

• Consider the following table:

• We think the model is:

• Classical regression solves this and gets:
• b0 = -1.175
• b1 = 0.875
• b2 = 1.325

Observation Xi0 Xi1 Xi2 Yi
1 1 2 6 8
2 1 3 9 14
3 1 5 7 12
4 1 7 8 17
5 1 8 10 18

iiiii eXXXY +++= 221100 βββ
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Now, Add a Constraint

• Suppose that the b’s must add to > 1.5
• Can’t use classical regression anymore
• However, we can just add a constraint to a quadratic 
optimization:

• In this case, the answer changes to:
• b0 = -0.641
• b1 = 0.891
• b2 = 1.251
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Solving Quadratic Programs in MPL

• Most LP solvers (like CPLEX) will solve quadratic 
programs

• Here’s the code for the Markowitz problem:

INDEX
i := (att,gmc,usx);
j := i;

OPTIONS
modeltype = quadratic;

DATA
RETURN = 1.20;
RET[i] := (1.089,1.214,1.235);
COV[i,j] := (0.01081,0.01241,0.01308,

0.01241,0.05839,0.05543,
0.01308,0.05543,0.09423);

VARIABLES
x[i];

MODEL
MIN variance = 

SUM(i,j: COV[i,j]*x[i]*x[i=j]);

SUBJECT TO

budgetcon:
SUM(i: x[i]) = 1;

retcon:
SUM(i: RET[i]*x[i]) > RETURN;

END


