Formulation

- Essential step in modeling
 - Abstracts the operational problem into a mathematical model
 - Is the first opportunity to test model validity
- In optimization, the formulation is where the ambiguity ends
- So how do you learn to formulate?
 - Practice, practice, practice
 - Formulation is also an art; real-life problems always have alternative formulations

Constructive Formulation Approach

- From Schrage (1997)
 - Determine what is to be decided (variables)
 - Determine how the decisions will be scored (objective function)
 - Determine conditions and relationships that restrict values of variables (constraints)
 - Populate model with data, or adjust for availability of data
 - Choose solution method appropriate for relationships
 - If relationships are too hard mathematically, consider adjusting model to give up precision for tractability
- Objective: train you to be able to employ this approach

Template Formulation Approach

- From Schrage (1997); is also Winston's approach
 - Start with a taxonomy of model types
 - Classify your situation according to this taxonomy
 - Use an existing model as a template for your problem
- Templates we will cover (for LP)
 - Product mix
 - Covering, staffing, scheduling
 - Blending
 - Multiperiod planning
 - Simple recourse (stochastic) models
 - Network models
 - Project planning models
 - (some) Two-sided game models

How You Will Formulate: NPS Format

- Accurate documentation is crucial
 - Lack of it has killed many projects
 - Subject treated poorly or omitted in mainstream texts (including Winston)
- The following format was popularized at the Naval Postgraduate School
 - Matches up very well with algebraic languages such as MPL
 - Acceptable to any journal
- Warning: the format is algebraic!
 - The max $c_1x_1+c_2x_2+c_3x_3$ jazz is NOT allowed
 - Will force you to write compact, flexible formulations
 - Will make transition to large models painless

The Format

- Indices
 - Domains and fundamental dimensions for the model
 - Example: products, time periods, regions, factories
- Data
 - The input to the model, indexed using the indices
 - Convention: data is UPPERCASE
- Variables
 - The quantities to be determined, indexed using the indices
 - Convention: variables are lowercase

The Format (cont'd)

- Objective function
 - The quantity to be optimized
 - Indicate max or min; designate a variable = to the objective
- Constraints
 - The binding relationships
 - Constraints are ALSO indexed (real power of algebraic language)
 - Attach a word description to each set of constraints
 - Include bounds on variables (like nonnegativity)

• ALGEBRAIC MODELING LANGUAGE CODE IS NOT A FORMULATION!

Product Mix Using NPS Format

- Go back to Wyndor Glass
- Indices
 - *p* = products {1,2}
 - *f* = factories {1,2,3}
- Data
 - **PROFIT**_p = \$ profit per unit of p sold
 - **CAP**_{pf} = capacity required per unit of p built at f
 - **TOTCAP**_f = total capacity available at f
- Variables
 - *num_p* = units of *p* to produce
 - totprofit = total profit

Product Mix NPS Format (cont'd)

- Objective
 - $\max_{num} \quad totprofit = \sum_{p} PROFIT_{p} * num_{p}$
- Constraints
 - $\sum_{p} CAP_{pf} * num_{p} \le TOT_{f}$ for all f (factory capacity constraints)

 $num_p \ge 0$ for all p (nonnegativity)

- This is compact, scalable, and easily implementable
 - Works for 2 products and 3 factories, or m products and n factories
 - Uses index, variable, and data names that relate to the problem

Characteristics of the Product Mix Problem

- Set of "products" that could be produced
- Products require differing amounts of limited resources
- Products have different costs, profits, or demands
- Problem is generally static no time dimension
- Challenge for the students
 - Suppose in the Wyndor Glass problem, sales beyond the first INITIAL_p units have a DISCOUNT_p profit decrease due to discounting
 - How do we account for that in the model?

Formulation II: Covering, Staffing, Scheduling

- Covering problems
 - Some set of activities have to be "covered"
 - Normally looking for a minimum cost solution
- Staffing and scheduling are essentially covering problems
- Can take different forms
 - Do the best with what you have to work with (optimize performance)
 - Determine needed resources (optimize design)
- Warning
 - Most real problems require integral answers; LP doesn't work well
 - Many scheduling problems are real backbreakers
 - Be very careful when taking on a big covering problem

Example: Winston p. 76, #3 and #4

- Read problem description any ambiguities?
 - Does an employee always work overtime?
 - Do we have to know how much of the requirement/day is regular and how much is overtime?
 - Does the day of overtime always occur at the end of the regular 5-day shift? Before? Either? Does it matter?
- Data as presented
 - \$50/day for straight time, \$62/day for overtime
 - Daily requirements
 - Monday 17; Tuesday 13
 - Wednesday -15; Thursday 19
 - Friday 14; Saturday 16
 - Sunday -11

Get Something Down on Paper

- Indicies
 - **d** = days {m,t,w,th,f,s,sn}
- Data
 - **REQ**_d = workers required per day
 - **SCOST** = \$ per week per worker for straight time (\$250)
 - **OCOST** = \$ per week per worker for overtime (\$312)
- Variables?
 - \mathbf{s}_{d} = number of workers starting on day **d** working straight time
 - o_d = number of workers starting on day **d** working overtime
 - **totcost** = total weekly cost to be minimized
 - Will this work? What else will we need to do?

Objective and Constraints

- Objective
 - $\min_{s,o}$ totcost = SCOST * $\sum_{d} s_d + OCOST * \sum_{d} o_d$
- OK, smart guy, how do you write *these* constraints algebraically?
 - Answer #1: attach a number to each day, then come up with some function that maps day starting to days covered
 - Answer #2: define a multidimensional set, and sum over that
- We'll go with #2
 - Define scover(d,d1) as all the days d1 covered by a straight-time worker starting on day d
 - Define **ocover(d,d1)** the same way
 - d1 is called an *alias* for d; they both index the same set

Continuing ...

- So, the **scover(d,d1)** set would look like:
 - {m,m},{m,t},{m,w},{m,th},{m,f} {t,t},{t,w},{t,th},{t,f},{t,s} ...
 - ocover(d,d1) is similar
 - NOTE: it's much easier to define sets of days NOT covered; also, we could use (d-1) for overtime shifts if we define d as "circular"
- The constraints (note d1 and d!):

$$\sum_{d \in scover(d,dI)} S_d + \sum_{d \in ocover(d,dI)} o_d \ge REQ_{d1} \text{ for all } dI$$
$$S_d, o_d \ge 0 \text{ for all } d$$

OR 541 Spring 2007 Lesson 2-2, p. 5

Constraints in Variable-By-Variable Form

$$s_m + s_{th} + s_f + s_s + s_{sn} + o_m + o_w + o_{th} + o_f + o_s + o_{sn} \ge REQ_m \quad (Monday)$$

 $S_m + S_t + S_f + S_s + S_{sn} +$ $o_m + o_t + o_{th} + o_f + o_s + o_{sn} \ge REQ_t$ (Tuesday)

- •

etc

OR 541 Spring 2007 Lesson 2-2, p. 6

So What's the Answer?

- Employees
 - 5-day shifts: 2 Tuesday, 4 Thursday, 3 Sunday
 - 6-day shifts: 6 Monday, 2 Wednesday, 2 Saturday
 - Note: LP solution was naturally integer!
- Total cost: 5370; cheaper than original solution?
 - How much overtime pay is going out?
 - How would you modify this to limit overtime pay?

How about #4?

- Use same indices and data (assume no overtime)
- Variables?
 - s_d = number of workers starting on day d working straight time

d

- *totdays* = total weekend days off (to be maximized)
- Objective
 - max $totdays = 2 * s_m + s_t + s_{sn}$
- Constraints

$$\sum_{d \in scover(dI,d)} s_{d1} \ge REQ_d \text{ for all}$$
$$\sum_{d} s_d = 25$$
$$s_d \ge 0 \text{ for all } d$$

OR 541 Spring 2007 Lesson 2-2, p. 8

The Answer Is...

- 23 total weekend days
- Shift assignments
 - Monday: 6
 - Tuesday: 8
 - Thursday: 2
 - Friday: 6
 - Sunday: 3
- LP produced natural integer answer again!

Formulation III: Blending Problems

- Were the earliest problems attacked with LP
 - Stigler's diet problem (1945) predated Dantzig's simplex work
 - Heavily used by oil companies, agricultural firms
- Characteristics
 - Problem starts with a set of input raw materials
 - Each raw material has some set of qualities
 - Materials must be blended so the outputs have certain aggregate qualities
 - In linear form, assumes that output quality is some weighted average of the input quality

Winston p. 91, #14

- Indicies
 - **g** = gasolines {r,p}
 - i = inputs {ref, fcg, iso, pos, mtb, but}
- Data
 - AVAIL_i = daily availability of input i in liters
 - RON_i = octane of input i
 - **RVP**_i = RVP rating of input i
 - $A70_i = ASTM$ volatility of i at 70C
 - **A130**_i = ASTM volatility of i at 130C
 - **RONRQ**_g = required octane of gas g
 - **RVPRQ**_g = required RVP rating of gas g
 - A70RQ_g = ASTM volatility of g at 70C required
 - $A130RQ_g = ASTM$ volatility of g at 130C required

Blending: p. 93, #14 (cont'd)

- Data (cont'd)
 - **DEMAND**_g = daily minimum demand for gas g
 - **PRICE**_g = selling price/liter of gas g
 - FCGLIM = limit on proportion of FCG in each gas g
 - Do we need to include the lead removal cost in the LP? Again, what are we trying to decide?
- Variables
 - *inp_{gi}* = liters of input i used to make gas g
 - *totgross* = total gross from gas sales
- Objective function

$$\max \quad totgross = \sum_{g,i} PRICE_g * inp_{gi}$$

OR 541 Spring 2007 Lesson 2-2, p. 12

Blending: p. 93, #14 (cont'd)

• Constraints (easy)

 $\sum_{g} inp_{gi} \le AVAIL_{i} \text{ for all } i \text{ (don't exceed availability)}$ $\sum_{i} inp_{gi} \ge DEMAND_{g} \text{ for all } g \text{ (meet demand)}$

• Harder constraints

$$\begin{split} &\frac{inp_{g,"fcg"}}{\sum_{i}inp_{gi}} \leq FGCLIM \text{ for all } g \text{ (proportional limit)} \\ &\text{linearize :} \\ &inp_{g,"fcg"} \leq FGCLIM * \sum_{i}inp_{gi} \text{ for all } g \end{split}$$

OR 541 Spring 2007 Lesson 2-2, p. 13

Blending: p. 93, #14 (cont'd)

• Hardest constraints

$$\frac{\sum_{i} RON_{i} * inp_{gi}}{\sum_{i} inp_{gi}} \ge RONRQ_{g} \text{ for all } g \text{ (meet octane limit)}$$

linearize :
$$\sum_{i} RON_{i} * inp_{gi} \ge RONRQ_{g} * \sum_{i} inp_{gi} \text{ for all } g$$

• Remainder left as an exercise (but what about RVP? Is it a min, equality, or what?)

The Rest of the Constraints

$$\sum_{i} RVP_{i} * inp_{gi} = RVPRQ_{g} * \sum_{i} inp_{gi} \text{ for all } g$$

$$\sum_{i} A70_{i} * inp_{gi} \ge A70RQ_{g} * \sum_{i} inp_{gi} \text{ for all } g$$

$$\sum_{i} A130_{i} * inp_{gi} \ge A130RQ_{g} * \sum_{i} inp_{gi} \text{ for all } g$$

Formulation III: Multiperiod Planning

- Modeling partitioned by time periods
 - Some decision to be made in each time period
 - Decisions cover some time horizon
- Typical examples
 - Inventory models
 - Financial models, such as cash flows
 - Multiperiod work scheduling
- Formulation challenges
 - Determining linkages between time periods
 - Deciding whether to discount across time
 - Handling "end effects"

Inventory example: Winston p. 104, #5

Indices

- t = time {1,2} (NOTE: t is *always* time, if your model uses time)
- v = vehicle type {car, truck}
- Data
 - **DEMAND**_{vt} = demand for v in month t
 - $LIMIT_t$ = maximum vehicle production in month t
 - **STEEL**_v = tons of steel required for vehicle v
 - $SCOST_t = cost per ton of steel in month t, $$
 - $SAVAIL_t$ = tons of steel available in month t
 - **BINV**_v = beginning inventory of vehicle v
 - **HOLD** = holding cost per vehicle per month, \$
 - MPG_v = miles per gallon of vehicle v
 - MPGAVG = required avg MPG for all vehicles produced each month

Inventory, continued

- Variables: what has to be decided?
 - **prod**_{vt} = number of v produced in month t
 - **totcost** = total cost of meeting demand (holding plus steel)
 - Do we need anything else?
 - inv_{vt} = inventory of v at the end of month t
 - NOTE: the inventory variables are a convenience; we could formulate the problem without them (and in integer programming applications, that might be better). We will use them for clarity
- Objective
 - minimize cost of holding plus cost of steel

$$\min_{prod,inv} totcost = \sum_{v,t} SCOST_t * STEEL_v * prod_v + HOLD * \sum_{v,t} inv_{vt}$$

OR 541 Spring 2007 Lesson 2-3, p. 3

Inventory, cont'd

Easy constraints

 $\sum_{v} prod_{vt} \le LIMIT \text{ for all } t \text{ (production limits)}$ $\sum_{v} STEEL_{v} * prod_{vt} \le SAVAIL \text{ for all } t \text{ (steel purchase limits)}$

• Harder constraints

$$\frac{\sum_{v} MPG_{v} * prod_{vt}}{\sum_{v} prod_{vt}} \ge MPGAVG \text{ for all } t \text{ (MPG fleet limit)}$$

linearize :
$$\sum_{v} MPG_{v} * prod_{vt} \ge MPGAVG * \sum_{v} prod_{vt}$$

OR 541 Spring 2007 Lesson 2-3, p. 4

Inventory, cont'd

- The hardest part: material balance constraints
 - In words: inventory from last period + production demand = end of period inventory
- So:

$$BINV_v + prod_{vt} - DEMAND_{vt} = inv_{vt}$$
 for all $v, t = 1$

$$inv_{v,t-1} + prod_{vt} - DEMAND_{vt} = inv_{vt}$$
 for all $v, t > 1$

 $inv_{vt}, prod_{vt} \ge 0$ for all v, t

- Does this guarantee demand will be met? How?
- Suppose steel could be held across periods? How do we handle that?

There Is One Central Trick in These Models

- These formulations typically use extra variables
 - Represent some resource carried from one period to the next
 - Are a function of activity in previous period and current period
 - Makes formulation clearer (and less dense)
- How would we substitute out the **inv_{vt}** variables?

$$BINV_{v} + prod_{vt} - DEMAND_{vt} \ge 0 \text{ for all } v,t = 1$$

$$(BINV_{v} + prod_{vt-1} - DEMAND_{vt-1}) + prod_{vt} - DEMAND_{vt} \ge 0 \text{ for all } v,t = 2$$

$$[(BINV_{v} + prod_{v,t-2} - DEMAND_{v,t-2}) + prod_{v,t-1} - DEMAND_{v,t-1}] + prod_{vt} - DEMAND_{vt} \ge 0 \text{ for all } v,t = 3$$

$$\vdots$$

$$BINV + \sum_{t1 \le t} \left(prod_{v,t1} - DEMAND_{v,t1} \right) \ge 0 \text{ for all } v,t$$

OR 541 Spring 2007 Lesson 2-3, p. 6

Model Effects By Substituting Out

- Suppose we have **N** inventory balance constraints
- With explicit inventory variables:
 - N production + N inventory = 2N variables
 - Also have 2N nonzero coefficients in the constraints
- If you substitute them out:
 - N production =N variables
 - However, have N + (N-1) + (N-2) + ... + 1 = N(N+1)/2 nonzeros
- At N=20:
 - 40 variables and 40 nonzeros with explicit inventory variables
 - 20 variables and 210 nonzeros by substituting out
- Former is better for LP, latter is better for IP if production variables are integer (I will say why this is so later)

Modeling Issues with Multiperiod Models

- Demand certainty
 - Future demands, prices, costs, etc are almost always random
 - Yet, an LP must treat them as certain
 - Seems unreasonable not to account for this
- Model Omniscience
 - LPs pursue extreme solutions
 - In a multiperiod model, you are giving the optimization perfect knowledge of the future
 - Can lead to very strange behaviors (end effects; relate DAWMS story)

Some Tricks to Address These Issues

- Discounting
 - Idea here is to "discount" impact of decisions made in future periods
 - In design problems, gives more weight to more certain demands, prices, conditions
 - How would discounting apply to the car example?
- Cascading
 - An excellent technique, not used enough
 - Handles cases where the model has to allocate resources *across* time, but behaves badly if it knows the future
 - Method: break model into a sequence of LPs that "cascade" across time
 - Run model for n periods, "freeze" results for some m < n periods, and run the next n-period solution

Cascade Example

- Convert a 6-period model into a 3-period model, with 5 separate runs
- In each run but the last, the results of the first period are fixed, and resources used there are subtracted in the next run
- The model always sees the future, but its horizon is limited
- It also thinks there's some future after period 6