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Formulation

• Essential step in modeling
• Abstracts the operational problem into a mathematical model
• Is the first opportunity to test model validity

• In optimization, the formulation is where the 
ambiguity ends 

• So how do you learn to formulate?
• Practice, practice, practice
• Formulation is also an art; real-life problems always have 

alternative formulations
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Constructive Formulation Approach

• From Schrage (1997)
• Determine what is to be decided (variables)
• Determine how  the decisions will be scored (objective function)
• Determine conditions and relationships that restrict values of 

variables (constraints)
• Populate model with data, or adjust for availability of data
• Choose solution method appropriate for relationships

• If relationships are too hard mathematically, consider adjusting model 
to give up precision for tractability

• Objective: train you to be able to employ this approach
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Template Formulation Approach

• From Schrage (1997); is also Winston’s approach
• Start with a taxonomy of model types
• Classify your situation according to this taxonomy
• Use an existing model as a template for your problem

• Templates we will cover (for LP)
• Product mix
• Covering, staffing, scheduling
• Blending
• Multiperiod planning
• Simple recourse (stochastic) models

• Network models
• Project planning models
• (some) Two-sided game models
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How You Will Formulate: NPS Format

• Accurate documentation is crucial
• Lack of it has killed many projects
• Subject treated poorly or omitted in mainstream texts (including

Winston)

• The following format was popularized at the Naval 
Postgraduate School
• Matches up very well with algebraic languages such as MPL
• Acceptable to any journal

• Warning: the format is algebraic!
• The max c1x1+c2x2+ c3x3 jazz is NOT allowed
• Will force you to write compact, flexible formulations
• Will make transition to large models painless
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The Format

• Indices
• Domains and fundamental dimensions for the model
• Example: products, time periods, regions, factories

• Data
• The input to the model, indexed using the indices
• Convention: data is UPPERCASE

• Variables
• The quantities to be determined, indexed using the indices
• Convention: variables are lowercase
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The Format (cont’d)

• Objective function
• The quantity to be optimized
• Indicate max or min; designate a variable = to the objective

• Constraints
• The binding relationships
• Constraints are ALSO indexed (real power of algebraic language)
• Attach a word description to each set of constraints
• Include bounds on variables (like nonnegativity)

• ALGEBRAIC MODELING LANGUAGE CODE IS NOT 
A FORMULATION!
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Product Mix Using NPS Format

• Go back to Wyndor Glass
• Indices

• p = products {1,2}
• f =  factories {1,2,3}

• Data
• PROFITp = $ profit per unit of p sold
• CAPpf = capacity required per unit of p built at f
• TOTCAPf = total capacity available at f

• Variables
• nump = units of p to produce
• totprofit = total profit
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Product Mix NPS Format (cont’d)

• Objective
•

• Constraints
•

• This is compact, scalable, and easily implementable
• Works for 2 products and 3 factories, or m products and n 

factories
• Uses index, variable, and data names that relate to the problem

∑ ∗=
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num
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 allfor  0
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(nonnegativity)
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Characteristics of the Product Mix Problem

• Set of “products” that could be produced
• Products require differing amounts of limited resources
• Products have different costs, profits, or demands
• Problem is generally static - no time dimension
• Challenge for the students

• Suppose in the Wyndor Glass problem, sales beyond the first 
INITIALp units have a DISCOUNTp profit decrease due to 
discounting

• How do we account for that in the model?
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Formulation II: Covering, Staffing, Scheduling

• Covering problems
• Some set of activities have to be “covered”
• Normally looking for a minimum cost solution

• Staffing and scheduling are essentially covering problems
• Can take different forms

• Do the best with what you have to work with (optimize 
performance)

• Determine needed resources (optimize design)

• Warning
• Most real problems require integral answers; LP doesn’t work well
• Many scheduling problems are real backbreakers
• Be very careful when taking on a big covering problem
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Example: Winston p. 76, #3 and #4

• Read problem description - any ambiguities?
• Does an employee always work overtime?
• Do we have to know how much of the requirement/day is regular 

and how much is overtime?
• Does the day of overtime always occur at the end of the regular 

5-day shift? Before? Either? Does it matter?

• Data as presented
• $50/day for straight time, $62/day for overtime
• Daily requirements

• Monday - 17; Tuesday - 13

• Wednesday -15; Thursday - 19
• Friday - 14; Saturday - 16

• Sunday -11
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Get Something Down on Paper

• Indicies
• d = days {m,t,w,th,f,s,sn}

• Data
• REQd = workers required per day
• SCOST = $ per week per worker for straight time ($250)
• OCOST = $ per week per worker for overtime ($312)

• Variables?
• sd = number of workers starting on day d working straight time
• od = number of workers starting on day d working overtime
• totcost = total weekly cost to be minimized
• Will this work? What else will we need to do?
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Objective and Constraints

• Objective
•

• OK, smart guy, how do you write these constraints 
algebraically?
• Answer #1: attach a number to each day, then come up with 

some function that maps day starting to days covered
• Answer #2: define a multidimensional set, and sum over that

• We’ll go with #2
• Define scover(d,d1) as all the days d1 covered by a straight-time 

worker starting on day d
• Define ocover(d,d1) the same way
• d1 is called an alias for d; they both index the same set

∑∑ +=
d

d
d

d
os

oOCOSTsSCOSTtotcost **min
,
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Continuing ...

• So, the scover(d,d1) set would look like:
• {m,m},{m,t},{m,w},{m,th},{m,f}

{t,t},{t,w},{t,th},{t,f},{t,s} …
• ocover(d,d1) is similar
• NOTE: it’s much easier to define sets of days NOT covered; also, 

we could use (d-1) for overtime shifts if we define d as “circular”

• The constraints (note d1 and d!):

dos

d1REQos

dd

d
d1docoverd
d

d1dscoverd
d

 allfor   0,

 allfor   1
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≥

≥+ ∑∑
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Constraints in Variable-By-Variable Form

etc
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So What’s the Answer?

• Employees
• 5-day shifts: 2 Tuesday, 4 Thursday, 3 Sunday
• 6-day shifts: 6 Monday, 2 Wednesday, 2 Saturday
• Note: LP solution was naturally integer!

• Total cost: 5370; cheaper than original solution?
• How much overtime pay is going out?
• How would you modify this to limit overtime pay?
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How about #4?

• Use same indices and data (assume no overtime)
• Variables?

• sd = number of workers starting on day d working straight time
• totdays = total weekend days off (to be maximized)

• Objective
•

• Constraints  
sntm

s
ssstotdays ++= *2max
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The Answer Is...

• 23 total weekend days
• Shift assignments

• Monday: 6
• Tuesday: 8
• Thursday: 2
• Friday: 6
• Sunday: 3

• LP produced natural integer answer again!
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Formulation III: Blending Problems

• Were the earliest problems attacked with LP
• Stigler’s diet problem (1945) predated Dantzig’s simplex work
• Heavily used by oil companies, agricultural firms

• Characteristics
• Problem starts with a set of input raw materials
• Each raw material has some set of qualities
• Materials must be blended so the outputs have certain aggregate 

qualities
• In linear form, assumes that output quality is some weighted 

average of the input quality
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Winston p. 91, #14

• Indicies
• g = gasolines {r,p}
• i = inputs {ref, fcg, iso, pos, mtb, but}

• Data
• AVAIL i = daily availability of input i in liters
• RONi = octane of input i
• RVPi = RVP rating of input i
• A70 i = ASTM volatility of i at 70C
• A130 i = ASTM volatility of i at 130C
• RONRQg = required octane of gas g
• RVPRQg = required RVP rating of gas g
• A70RQg = ASTM volatility of g at 70C required
• A130RQg = ASTM volatility of g at 130C required
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Blending: p. 93, #14 (cont’d)

• Data (cont’d)
• DEMANDg = daily minimum demand for gas g
• PRICEg = selling price/liter of gas g
• FCGLIM = limit on proportion of FCG in each gas g
• Do we need to include the lead removal cost in the LP? Again, 

what are we trying to decide?

• Variables
• inpgi = liters of input i used to make gas g
• totgross = total gross from gas sales

• Objective function
•

∑=
ig

gig inpPRICEtotgross
,

*max



OR 541 Spring 2007
Lesson 2-2, p. 13

Blending: p. 93, #14 (cont’d)

• Constraints (easy)

• Harder constraints
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Blending: p. 93, #14 (cont’d)

• Hardest constraints

• Remainder left as an exercise (but what about RVP? Is 
it a min, equality, or what?)
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The Rest of the Constraints
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ginpA70RQinpA70
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Formulation III: Multiperiod Planning

• Modeling partitioned by time periods
• Some decision to be made in each time period
• Decisions cover some time horizon

• Typical examples
• Inventory models
• Financial models, such as cash flows
• Multiperiod work scheduling

• Formulation challenges
• Determining linkages between time periods
• Deciding whether to discount across time
• Handling “end effects”
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Inventory example: Winston p. 104, #5

• Indices
• t = time {1,2} (NOTE: t is always time, if your model uses time)
• v = vehicle type {car, truck}

• Data
• DEMANDvt = demand for v in month t
• LIMIT t = maximum vehicle production in month t
• STEELv = tons of steel required for vehicle v
• SCOSTt = cost per ton of steel in month t, $
• SAVAIL t = tons of steel available in month t
• BINVv = beginning inventory of vehicle v
• HOLD = holding cost per vehicle per month, $
• MPGv = miles per gallon of vehicle v
• MPGAVG = required avg MPG for all vehicles produced each 

month
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Inventory, continued

• Variables: what has to be decided?
• prod vt = number of v produced in month t
• totcost = total cost of meeting demand (holding plus steel)
• Do we need anything else?
• inv vt = inventory of v at the end of month t
• NOTE: the inventory variables are a convenience; we could 

formulate the problem without them (and in integer programming 
applications, that might be better). We will use them for clarity

• Objective
• minimize cost of holding plus cost of steel
•

∑

∑

+

=

tv
vt

tv
vtvt

invprod

invHOLD

prodSTEELSCOSTtotcost

,

,
,

*

**min
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Inventory, cont’d

• Easy constraints

• Harder constraints  

limits) purchase (steel  allfor   *

limits) n(productio  allfor   
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Inventory, cont’d

• The hardest part: material balance constraints
• In words: inventory from last period + production - demand

= end of period inventory

• So:

• Does this guarantee demand will be met? How?
• Suppose steel could be held across periods? How do 
we handle that?

v,t prodinv

v,t invDEMANDprodinv

v,t  invDEMANDprodBINV

vtvt

vtvtvttv

vtvtvtv

 allfor   0,

1 allfor   

 1 allfor   

1,

≥

>=−+

==−+

−



OR 541 Spring 2007
Lesson 2-3, p. 6

There Is One Central Trick in These Models

• These formulations typically use extra variables
• Represent some resource carried from one period to the next
• Are a function of activity in previous period and current period
• Makes formulation clearer (and less dense)

• How would we substitute out the inv vt variables?

( )
( )[ ]

( ) v,t DEMANDprodBINV

v,t DEMANDprod

DEMANDprodDEMANDprodBINV

v,t DEMANDprodDEMANDprodBINV

v,t  DEMANDprodBINV

tt
tvtv

vtvt

tvtvtvtvv

vtvtvtvtv

vtvtv

 allfor   0

3 allfor   0

2 allfor   0

 1 allfor   0

1
1,1,

1,1,2,2,

11

≥−+

=≥−
+−+−+

=≥−+−+
=≥−+

∑
≤

−−−−

−−
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Model Effects By Substituting Out

• Suppose we have N inventory balance constraints
• With explicit inventory variables:

• N production + N inventory = 2N variables
• Also have 2N nonzero coefficients in the constraints

• If you substitute them out:
• N production =N variables
• However, have N + (N-1) + (N-2) + … + 1 = N(N+1)/2 nonzeros

• At N=20:
• 40 variables and 40 nonzeros with explicit inventory variables
• 20 variables and 210 nonzeros by substituting out

• Former is better for LP, latter is better for IP if production 
variables are integer (I will say why this is so later)
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Modeling Issues with Multiperiod Models

• Demand certainty
• Future demands, prices, costs, etc are almost always random
• Yet, an LP must treat them as certain
• Seems unreasonable not to account for this

• Model Omniscience
• LPs pursue extreme solutions
• In a multiperiod model, you are giving the optimization perfect 

knowledge of the future
• Can lead to very strange behaviors (end effects; relate DAWMS 

story)
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Some Tricks to Address These Issues

• Discounting
• Idea here is to “discount” impact of decisions made in future 

periods
• In design problems, gives more weight to more certain demands, 

prices, conditions
• How would discounting apply to the car example?

• Cascading
• An excellent technique, not used enough
• Handles cases where the model has to allocate resources across 

time, but behaves badly if it knows the future
• Method: break model into a sequence of LPs that “cascade”

across time
• Run model for n periods, “freeze” results for some m < n periods, 

and run the next n-period solution
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Cascade Example

1 2 3

2 3 4

3 4 5

4 5 6

5 6 7

•Convert a 6-period model 
into a 3-period model, 
with 5 separate runs

• In each run but the last, 
the results of the first 
period are fixed, and 
resources used there are 
subtracted in the next run

•The model always sees 
the future, but its horizon 
is limited

• It also thinks there’s some 
future after period 6


