Simple Bounds in the Dual

- Many problems have simple bounds on primal variables
 - How do these show up in the dual?
 - Also, what if we have simple bounds on the dual variables?
- Consider the following "elastic" LP:

max
$$z = c_1 x + c_2 s_1 - c_3 s_2$$

subject to
$$Ax + s_1 - s_2 = b$$

$$l \le x \le u$$

$$s_1, s_2 \ge 0$$

- In this LP, every constraint is really a "goal"
 - Objective function has rewards and penalties for deviations
 - The auxiliary variables are slacks (\$\mathbf{s}_1\$) and surpluses (\$\mathbf{s}_2\$)

The Dual of the Elastic LP

 The primal bounds end up in the dual objective, and the primal rewards/penalties become dual bounds

min
$$y = w_1b + w_2u - w_3l$$

subject to

$$w_1A + w_2 - w_3 \ge c_1$$

$$c_2 \le w_1 \le c_3$$

$$w_2, w_3 \ge 0$$

- This is a useful model when:
 - It is unclear what the RHS should be
 - It is unclear if the RHS can even be achieved (FOOTSTOMP)
 - You can estimate the feasible range of the shadow prices

Adding Constraints to an LP

Suppose I have the following integer program:

min
$$z = 3x_1 + 4x_2$$

subject to
 $3x_1 + x_2 \ge 4$, or $3x_1 + x_2 - s_1 = 4$
 $x_1 + 2x_2 \ge 4$, or $x_1 + 2x_2 - s_2 = 4$
 $x_1, x_2 \ge 0$ and integer, $s_1, s_2 \ge 0$

- I employ the "prayer method" (solve as an LP and hope the answer's integral) and get:
- $x_1 = 4/5$, $x_2 = 8/5$
- Now what?

Adding a "Cut"

• I will now do something *very strange*; I add the following constraint to the model:

$$\frac{1}{5}s_1 + \frac{2}{5}s_2 \ge \frac{3}{5}$$
, or $-\frac{1}{5}s_1 - \frac{2}{5}s_2 + s_3 = -\frac{3}{5}$, $s_3 \ge 0$

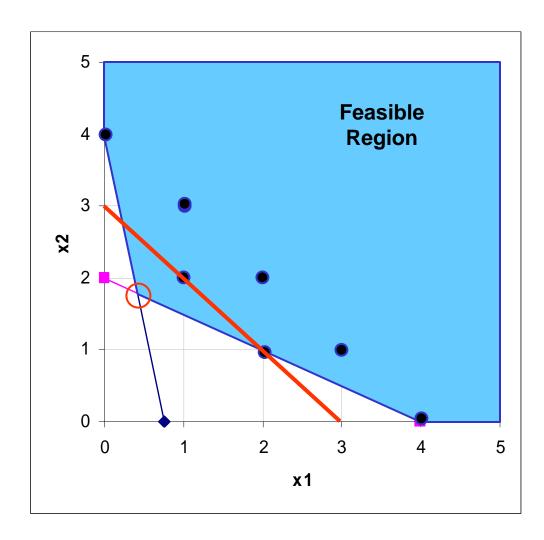
- This is called a "Gomory dual fractional cut"
 - What exactly is getting cut?
 - We will touch on this more in the IP part of the course
- Now, do we want to solve the problem all over again?
 - Seems like we could do some sort of "restart"
 - However, adding this constraint will make the problem infeasible

Graphical Depiction of the Cut

feasible points

cut

fractional LP soln



Adding the Constraint to the Tableau

Here's the LP tableau at optimality (via LINDO):

Row	Z	x 1	x2	s ₁	s ²	RHS	BV
0	1	0	0	(-2/5)	(-9/5)	44/5	Z
1		1	0	-2/5	1/5	4/5	x1
2		0	1	1/5	-3/5	8/5	x2

note – since this is a min problem

• Here's the new tableau with the constraint, slack s_3 :

Row	Z	x 1	x2	s1	s2	s3	RHS	BV
0	1	0	0	-2/5	-9/5	0	44/5	Z
1		1	0	-2/5	1/5	0	4/5	x1
2		0	1	1/5	-3/5	0	8/5	x2
3		0	0	-1/5	-2/5	1	-3/5	s3

• Is this primal feasible? Dual feasible?

Introduction to Dual Simplex

- The tableau is dual feasible
 - Adding a row to the dual is the same as adding a column to the primal
 - Can you make the primal infeasible by adding more variables?
- Leads to an alternative scheme, called *dual simplex*
 - Discovered by C. E. Lemke in 1954 (Lemke was George Dantzig's first doctoral student)
 - Iterates among *dual* feasible solutions in a *primal* tableau
 - Improvements in dual simplex are responsible in dramatic improvements in LP solve times in the 1990's
 - More importantly, a key method for adding constraints in integer programming

Pivoting in Dual Simplex

- This method is a "transpose" of primal simplex
 - The pivot row is the most negative RHS
 - We only pivot on columns with negative coefficients
 - The ratio test is computed using the *objective function row;* take the ratio with the smallest *absolute value*
- Example:

Row	Z	x1	x2	s1	<u>s2</u>	s3	RHS	BV
0	1	0	0	(-2/5)	(-9/5	0	44/5	Z
1		1	0	-2/5	1/5	0	4/5	x 1
2		0	1	1/5	-3/5	0	8/5	x2
3		0	0	(-1/5	(-2/5)	1	(-3/5	s3

ratio = 2

ratio = 9/2

Dual Simplex Termination

- Dual simplex finishes when the tableau is primal feasible
 - Recall that we started, and stay, dual feasible
 - If both primal and dual are feasible, then where are we?
- Row operations are exactly the same in dual simplex
 - Once you pick a pivot element, you get a 1 there, and 0's in the rest of the column
 - Here's the tableau after the pivot:

Row	z	x 1	x2	s1	s2	s3	RHS	BV
0	1	0	0	0	-1	2	10	Z
1		1	0	0	1	-2	2	x1
2		0	1	0	-1	1	1	x2
3		0	0	1	2	-5	3	s1

• It's optimal, and integer

Dual Simplex as a Solution Method

Consider the starting tableau for the same problem:

Row	Z	x 1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		3	1	-1	0	4	x1
2		1	2	0	-1	4	x2

• We can't do primal simplex; no BFS, need Phase I

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		-3	-1	1	0	-4	x1
2		-1	-2	0	1	-4	x2

 This equivalent tableau, however, is dual feasible; we can do dual simplex immediately

The Pivots

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	-3	-4	0	0	0	Z
1		(-3	-1	1	0	-4	s 1
2		-	-2	0	1	-4	s2

Row	Z	x 1	x2	s 1	s2	RHS	BV
0	1	0	-3	-1	0	4	Z
1		1	1/3	-1/3	0	4/3	x1
2		0	(-5/3)	-1/3	1	-8/3	s2

Row	Z	x1	x2	s1	s2	RHS	BV
0	1	0	0	-2/5	-9/5	44/5	Z
1		1	0	-2/5	1/5	4/5	x1
2		0	1	1/5	-3/5	8/5	x2

Comprehensive Example

- This is a small problem
- Intended to show the entire process
 - Initial problem statement
 - First formulations
 - First solutions
 - Reformulations and modifications
 - Subsequent solutions
 - Sensitivity analysis
- Typical stumbling blocks

The Situation

- A group of investors wants to start a small passenger airline operation
 - The area they're targeting is currently only served by inconvenient hub-and-spoke routes
 - They believe they can compete and not get crushed in a price war; specialize in charters
 - They have a route structure and can lease various aircraft
 - The need to schedule their routes
- They call you in to assist
 - After some conversation, you believe you can model the problem
 - You're sent off to gather relevant data

Initial Information

- You meet with others involved in the new company
 - Most are irritated an outsider has been brought in
 - Cooperation is grudging; management has to threaten one group (the market forecasters) to get them to talk to you
- Here's the initial information
 - The airline wants to cover 5 routes
 - They have a forecast for demand on each route
 - They have leased 4 different aircraft types
 - Tentative operating costs (\$/ac/route) are available for each aircraft type
 - The pax capacity of each aircraft is known

What's the Objective and the Constraints?

- Minimize overall cost?
 - Only costs we have are operating (marginal) costs
 - Company claims to have fixed costs in hand, so you don't have to worry about them
- Other questions you might ask
 - Does it matter whether we have multiple aircraft types? (no, all lease, with contract maintenance)
 - Can we get different aircraft configurations? (No)
 - Are there limits on the number of aircraft available (No, they don't think so)
 - Does all demand have to be met? (Yes)
 - Is there a maximum operating cost? (No ... but they hadn't considered this yet)

Your Initial Formulation

- Determine the aircraft mix that:
 - Minimizes total operating cost, and
 - Covers all demand
- Management agrees
- Indicies:
 - a: aircraft types
 - r: routes
- Data
 - $DEMAND_r$ = passengers flying route r per month (100's)
 - $COST_{ar} = $1 \text{K/month to operate aircraft type } a \text{ on route } r$
 - **CAP**_a = maximum *monthly* capacity of aircraft type **a** (100's)

Formulation, cont'd

- Variables
 - aca_{ar} = # of aircraft a assigned to route r per day
- Objective and Constraints

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar}$$

subject to

$$\sum_{a} CAP_{ar} * aca_{ar} \ge DEMAND_{r} \text{ for all } r$$

$$aca_{ar} \ge 0$$
 for all a, r

MPL Code

```
INDEX
   a := (ac1, ac2, ac3, ac4); { aircraft types }
   r := (r1, r2, r3, r4, r5);
                                   { routes }
DATA
   COST[a,r] := (18,21,18,16,10, { cost of aircraft a on route r, $1k/month }
                   0,15,16,14,9,
                   0,10,0,9,6,
                   17,16,17,15,10); { NOTE: 0 cost means can't fly that route! }
   CAP[a,r] := (16,15,28,23,81,
                                     { capacity of aircraft a on route r, 100's/month }
                  0,10,14,15,57,
                  0,5,0,7,29,
                                      { NOTE: 0 capacity means can't fly that route! }
                  9,11,22,17,55);
   DEMAND[r] := (253,120,180,80,600); { demand per month (100's) on route r }
DECISION VARIABLES
               { number of aircraft a flying on route r }
    aca[a,r];
MODEL
   MIN totexpcost = SUM(a,r: COST[a,r]*aca[a,r]);
SUBJECT TO
   demreg[r]: { demand constraints }
     SUM(a: CAP[a,r]*aca[a,r]) > DEMAND[r];
END
```

Initial Solution

- Initial solution: use nothing but aircraft type 1
 - Optimal cost: \$698K/month
 - Assignment data:
 - VARIABLE aca[a,r] :

•	a	r	Activity	Reduced Cost
•				
•	ac1	r1	15.8125	0.0000
•	ac1	r2	8.0000	0.0000
•	ac1	r3	6.4286	0.0000
•	ac1	r4	3.4783	0.0000
•	ac1	r5	7.4074	0.0000

- What do you think the optimal integer solution is? Why?
- Change MPL code as follows to see:
 - INTEGER VARIABLES
 - aca[a,r]; $\{$ number of aircraft a flying on route r $\}$

Integer Solution and First Revisions

- The best integer solution is NOT to use all AC 1:
 - Optimal cost: \$720K/month
 - Aircraft assignments:

•	a	r	Activity	Reduced Cost
•				
•	ac1	r1	16.0000	18.0000
•	ac1	r2	8.0000	0.0000
•	ac1	r3	6.0000	18.0000
•	ac1	r4	2.0000	-4.2941
•	ac1	r5	6.0000	-2.7895
•	ac2	r3	1.0000	16.0000
•	ac2	r5	2.0000	0.0000
•	ac4	r4	2.0000	0.0000

- You present this to management
 - They say "we forgot; we can't get that many of AC 1"
 - It turns out there's limits on availability of all the aircraft types

Model Adjustments

- Data
 - AVAILa = number of aircraft a available
- New Model

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar}$$

subject to

$$\sum_{a} CAP_{ar} * aca_{ar} \ge DEMAND_r \text{ for all } r$$

$$\sum_{r} aca_{ar} \le AVAIL_a \text{ for all } a$$

$$aca_{ar} \ge 0$$
 for all a, r

First Model Death

Here's the MPL changes:

```
AVAIL[a] := (10,19,25,15); { aircraft availability }
acavail[a]: { aircraft availability }
SUM(r: aca[a,r]) < AVAIL[a];</pre>
```

- You run the model, and MPL says "integer infeasible"
 - What happened?
 - Change it back to an LP, see if it solves; it's still infeasible
 - Now what?
- Solve a different problem
 - Minimize the unmet demand, given the aircraft availability
 - See if you can figure out what combinations are causing trouble

The Next Model - Where Are We Short?

Here's the new formulation; minimize unmet demand

$$\min z = \sum_{r} unmet_{r}$$

$$\text{subject to}$$

$$\sum_{a} (CAP_{ar} * aca_{ar}) + unmet_{r} \ge DEMAND_{r} \text{ for all } r$$

$$\sum_{a} aca_{ar} \le AVAIL_{a} \text{ for all } a$$

$$aca_{ar} \ge 0 \text{ for all } a, r$$

$$unmet_{r} \ge 0 \text{ for all } r$$
Is this right? Why?

The Answers

LP results - close, but can't satisfy Route 1

CONSTRAINT acavail[a]: VARIABLE unmet[r] : Activity Reduced Cost Slack Shadow Price 9.7476 0.0000 0.0000 -16.0000 ac1 0.0000 r2 0.0000 0.4273 ac2 -5.7273 0.0000 0.5909 -2.8636 r3ac3 0.0000 r4 0.0000 0.6182 -9.0000 0.0000 0.0000 0.9013

- Which aircraft type do we probably want more of?
- Note that the integer answer is somewhat worse:

VARIABLE unmet[r] :

r	Activity	Reduced Cost
r1	12.0000	0.0000
r2	0.0000	0.0000
r3	0.0000	0.2857
r4	3.0000	0.0000
r5	0.0000	0.7586

Negotiations with the Customer

- Marketing group is upset; claims answer is wrong
- They show the following table:

Aircraft Capacity										
Route	Route AC 1 AC 2 AC 3 AC 4 Max									
1	16	0	0	9	295					
2	15	10	5	11	630					
3	28	14	0	22	876					
4	23	15	7	17	945					
5	81	57	29	55	3443					
AC Avail	10	19	25	15						

- How would you argue your way out of this?
 - But, suppose you win
 - Management says, "get with marketing and figure this out"

Adding a Bumping Cost

- Marketing says, "we can bump people at a price"
 - Data: BPCOST_r = \$K lost per 100 passengers bumped on route r
 - Variable: $bumped_r$ = passengers bumped on route r (100's)
- New model:

$$\min z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r} BPCOST_{r} * bumped_{r}$$

subject to

$$\sum_{a} CAP_{ar} * aca_{ar} + bumped_{r} \ge DEMAND_{r} \text{ for all } r$$

$$\sum_{r} aca_{ar} \le AVAIL_a \text{ for all } a$$

$$aca_{ar} \ge 0$$
 for all a, r ; $bumped_r \ge 0$ for all r

The New Solution

• LP solution: z = \$999K/month

VARIABLE bumped[r] :

CONSTRAINT acavail[a] :

r	Activity	Reduced Cost	a	Slack	Shadow Price
r1	0.0000	1.3016	ac1	0.0000	-169.1746
r2	0.0000	6.4000	ac2	0.0000	-51.0000
r3	0.0000	2.2143	ac3	0.0000	-23.0000
r4	0.0000	2.6667	ac4	0.0000	-88.2857
r5	98.7143	0.0000			

Integer solution: z = \$1012K/month

VARIABLE bumped[r] :

CONSTRAINT acavail[a]:

r	Activity	Reduced Cost	a	Slack	Shadow Price
r1	3.0000	0.0000	ac1	0.0000	-190.0000
r2	0.0000	6.4000	ac2	0.0000	-51.0000
r3	0.0000	2.2143	ac3	0.0000	-23.0000
r4	0.0000	2.4286	ac4	0.0000	-88.2857
r5	78.0000	0.0000			

The Management Responds

- Leadership doesn't like the answer
 - Almost all the bumping occurs in route 5
 - Wants the risk of bumping spread out more evenly across routes
 - Now what?
- First, check for multiple optima in the solution
 - May be an alternative that is cost optimal, but spreads out bumps
 - But, there are none in the LP solution
 - This means that spreading out bumping will cost more
- Note, however, that this is based on expected demand
 - Marketing says forecasts probably good to within 5%
 - Implies that total costs have about 5% accuracy as well
 - This is how we will try to spread out bumping

New Model to Spread Out Bumping

- Previous objective function now becomes a constraint
- We add a new variable, maxbump
- Here's the new model:

```
NOTE \begin{cases} \min z = maxbump \\ \text{subject to} \\ \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r} BPCOST_{r} * bumped_{r} \leq 1.05 * z_{original} \\ maxbump \geq bumped_{r} \text{ for all } r \\ \sum_{a} CAP_{ar} * aca_{ar} + bumped_{r} \geq DEMAND_{r} \text{ for all } r \\ \sum_{a} aca_{ar} \leq AVAIL_{a} \text{ for all } a \\ aca_{ar} \geq 0 \text{ for all } a, r \text{ ; } bumped_{r} \geq 0 \text{ for all } r \end{cases}
```

And, What Happens?

This solution does indeed spread out bumping:

VARIABLE bumped[r] :

r	Activity	Reduced Cost
r1	3.9969	0.0000
r2	3.8324	0.0000
r3	3.9969	0.0000
r4	3.9969	0.0000
r5	3.9969	0.0000

- This does not really make things equitable
 - Demand differs on each route
 - Management wants an equal chance of bumping on each route
 - Need to recast *maxbump* as a proportion of route demand

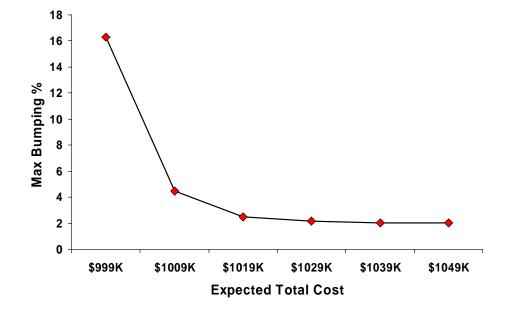
Bumping As a Proportion

- This solution has the optimal maxbump at 2.01%
- New bumping results:

VARIABLE bumped[r] :

r	Activity	Reduced Cost
r1	5.0832	0.0000
r2	2.4110	0.0000
r3	3.6165	0.0000
r4	1.6073	0.0000
r5	12.0551	0.0000

Here's how it varies by total cost:



Demand Scrutiny

- However, this whole exercise causes scrutiny of demand forecast
- Management to marketing: "Where the #\$%^@&!! did this come from?"
- Marketing digs through the files, comes up with the following spreadsheet data

The Original Demand Data

• Here's where the expected demand was derived from:

DEMAND

	Demand State							
Route	1	1 2 3 4 5						
1	200	220	250	270	300			
2	50	150						
3	140	160	180	200	220			
4	10	50	80	100	340			
5	580	600	620					

LIKELIHOOD

	Demand State								
Route	1	1 2 3 4 5							
1	0.2	0.05	0.35	0.2	0.2				
2	0.3	0.7							
3	0.1	0.2	0.4	0.2	0.1				
4	0.2	0.2	0.3	0.2	0.1				
5	0.1	0.8	0.1						

Looks like it's time for a recourse model

Extracting Scenarios

- Note that this data is by route
 - The *joint* distribution of demand is unclear
 - Seems reasonable, though, that if demand is high on one route, it is probably also high on another
- We decide to use 6 scenarios:

	scenario					
	s1	s2	s3	s4	s 5	s6
probability	0.2	0.2	0.2	0.2	0.1	0.1
route 1	200	243	250	270	300	300
route 2	50	100	150	150	150	150
route 3	150	170	180	190	200	220
route 4	10	50	80	90	100	340
route 5	590	600	600	600	600	620

The New Scenario Model

- Go back to minimizing cost, but add:
 - Index s = scenario
 - Data SPROB_s = probability of scenario s
 - Add s index to demand data and bumping variables
- New model

$$\begin{aligned} &\min \ z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r,s} SPROB_s * BPCOST_r * bumped_{rs} \\ &\text{subject to} \\ &\sum_{c} CAP_{ar} * aca_{ar} + bumped_{rs} \geq DEMAND_{rs} \text{ for all } r, s \\ &\sum_{c} aca_{ar} \leq AVAIL_a \text{ for all } a \\ &aca_{ar} \geq 0 \text{ for all } a, r \text{ ; } bumped_{rs} \geq 0 \text{ for all } r, s \end{aligned}$$

As You Would Expect ...

- This answer is nowhere near as rosy
 - Total expected cost: \$1562K
 - Operating cost: \$887K
 - Bumping cost: \$678K
- One route/scenario combo has 26,000 pax/month unmet demand
- Conversation ensues
 - First question: what if the route data is all independent?
 - **Second question:** If the 6-scenario model is valid, what's the minimum number of aircraft needed to ensure a less than 10% chance of bumping on any route?

Assume the Route Demands are Independent

Model mods:

- Index **d** = demand state (1-5)
- Data $DPROB_{rd}$ = probability of demand state d on route r
- Data DDEM_{rd} = demand on route r in demand state d
- Variable bumped_{rd} = number bumped from route r in demand state d
- New Model

$$\begin{aligned} &\min \ z = \sum_{a,r} COST_{ar} * aca_{ar} + \sum_{r,d} DPROB_{rd} * BPCOST_{r} * bumped_{rd} \\ &\text{subject to} \\ &\sum_{a} CAP_{ar} * aca_{ar} + bumped_{rd} \geq DDEM_{rd} \text{ for all } r, d \\ &\sum_{a} aca_{ar} \leq AVAIL_{a} \text{ for all } a \\ &aca_{ar} \geq 0 \text{ for all } a, r \text{ ; } bumped_{rd} \geq 0 \text{ for all } r, d \end{aligned}$$

Answer to the Independent Demand Case

- Total expected cost: \$1566K
 - \$883K operating cost
 - \$683K bumping cost
 - Bumping statistics similar to scenario case
 - Integer answer: \$1580K (very similar)
- Interesting result: total expected cost is slightly higher than the scenario case

Homework

- Answer the second question
 - Formulate and solve in MPL the case that minimizes the number of aircraft required to get less than 10% bumping for any route and scenario
 - Turn in separate formulation (written out, NOT MPL code)
 - Provide MPL code for new model
 - Also, investigate sensitivity of the solution for the range 5-15%
 - Changes in total costs
 - Changes in optimal fleet mixes
 - I have provided MPL code for the first question; work from there
- Also:
 - p. 335: 2a