Max – Min Problems

- These types of problems have become common recently in military and security circles
- General characteristics
 - Two opposed sides
 - One side is attempting to use a system
 - The other side is trying to thwart use of that system
 - System user has to commit to a course of action, then opposition reacts
 - Each side has limited resources
 - Each side knows the other's capabilities
- This is a Stackelberg (leader-follower) game
- Literature refers to these as attacker-defender models

Example: Roadblock Delay Model

Consider the modified shortest path model below:

$$\max_{y} \min_{x} z = \sum_{i,j \in ARCS(i,j)} \left\{ C_{ij} + D_{ij} y_{ij} \right\} * x_{ij}$$
subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij} \right] - \left[\sum_{j \in ARCS(j,i)} x_{ji} \right] = \left\{ 0, i \neq s \text{ and } i \neq d \right\}$$

$$0 \leq x_{ij} \leq 1 \text{ for all } ARCS(i,j)$$

$$\sum_{i,j \in ARCS(i,j)} y_{ij} \leq MAXCHECKPOINTS$$

$$i,j \in \{0,1\} \text{ for all } ARCS(i,j)$$

• What situation is being modeled? What are the D_{ii} 's?

Problems (and the Solution)

- We don't know how to maximize one set of variables while minimizing another
- The objective function is nonlinear
- What to do?
 - Note that if we fixed the y's, we'd have a typical shortest path formulation
 - So, let's do that, and write the *dual* of the problem:

```
\max z = u_d - u_s subject to u_j - u_i \le C_i + D_{ij} y_{ij} \text{ for all } i, j \in ARCS(i, j) u_i \text{ unrestricted for all } i
```

Now We Have Something We Can Solve

- The dual problem is *linear* in the *y's*
- The dual problem is also a maximization
- So, we can solve a *single* optimization:

```
\begin{aligned} &\max z = u_d - u_s \\ &\text{subject to} \\ \\ &u_j - u_i \leq C_i + D_{ij} y_{ij} \quad \text{for all } i, j \in ARCS(i, j) \\ \\ &u_i \text{ unrestricted for all } i \\ \\ &\sum_{i,j \in ARCS(i,j)} y_{ij} \leq MAXCHECKPOINTS \\ \\ &y_{ij} \in \{0,1\} \text{ for all } i, j \in ARCS(i,j) \end{aligned}
```

Application: Changi Naval Base, Singapore

Intelligence service gets word of a possible terrorist attack against a ship in port at Changi

Where should the checkpoints be set?

Ship needs 2 hours to get away to safe distance

When Does This Trick Work?

- You need the following structure in your model:
 - Variables associated with both sides only appear in the objective function
 - These variables appear in a multiplicative form
 - One side can be modeled using continuous variables (so you can form its dual)
- Methodology is available to iterate between optimizations
 - Necessary when both sides require integral variables
 - Mechanics of passing solutions between optimizations (and avoiding cycling) can be complicated
- You can also exploit network structure ...

Project Delay Model

- One side has a project, another wants to delay it
- Try augmenting the easy (dual) CPM formulation:

$$\begin{aligned} & \underset{y}{\text{max min}} \ z = u_d - u_s \\ & \text{subject to} \\ & u_j - u_i \geq C_i + D_i y_i \quad \text{for all } i, j \in ARCS(i, j) \\ & \sum_i DC_i y_i \leq DT \\ & u_i \text{ unrestricted for all } i \\ & y_i \in \{0,1\} \text{ for all } i \end{aligned}$$

D_i: delay if opposition attacks task *i*

DC_i: resource required to attack task i

DT: total resources available

No go: mixes u's and y's in the constraints

Try the Primal Form of CPM ...

• I'm maximizing both sides, but the objective is nonlinear

$$\max_{y} \max_{x} z = \sum_{i,j \in ARCS(i,j)} (C_i + D_i y_i) * x_{ij}$$
subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} x_{ji}\right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases}$$

$$0 \le x_{ij} \le 1 \text{ for all } ARCS(i,j)$$

$$\sum_{i} DC_i y_i \le DT$$

$$y_i \in \{0,1\} \text{ for all } i$$

• Am I stuck?

The Trick

Create additional arcs, which the attacker controls

$$\max_{y} \max_{x} z = \sum_{i,j \in ARCS(i,j)} (C_i + D_i)x'_{ij} + \sum_{i,j \in ARCS(i,j)} C_i x_{ij}$$
 subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij} + x'_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} x_{ji} + x'_{ji}\right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases}$$
 What do these constraints do?
$$\begin{cases} x'_{ij} \leq y_i \text{ for all } ARCS(i,j) \\ x_{ij} \leq 1 - y_i \text{ for all } ARCS(i,j) \\ 0 \leq x_{ij} \leq 1, 0 \leq x'_{ij} \leq 1 \text{ for all } ARCS(i,j) \\ \sum_{i} DC_i y_i \leq DT \\ 0 \leq x_{ij} \leq 1, 0 \leq x'_{ij} \leq 1 \text{ for all } ARCS(i,j) \\ y_i \in \{0,1\} \text{ for all } i \end{cases}$$

Can We Allow the Other Side to Crash Jobs?

 Change the (one-sided) project crashing model a bit to minimize total project time, with a constraint on added resources

$$\begin{aligned} &\min \ z = u_d - u_s \\ &\text{subject to} \\ &u_j - u_i \geq C_i - cr_i \ \text{for all} \ i, \ j \in ARCS(i, j) \quad \left(x_{ij}\right) \\ &\sum_i CC_i \cdot cr_i \leq CT \quad \left(v\right) \\ &u_i \ \text{unrestricted for all} \ i \\ &0 \leq cr_i \leq C_i - MIN_i \ \text{for all} \ i \quad \left(q_i\right) \end{aligned}$$

cr_i: amount to expedite task i

CC_i: resource per unit time to expedite task *i*

CT: total resources available

We need to form the dual of this model

Dual of Project Crashing Model

$$\max_{x,q,v} z = \sum_{i,j \in ARCS(i,j)} C_i x_{ij} + \sum_i (MIN_i - C_i) q_i - CT \cdot v$$
subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij}\right] - \left[\sum_{j \in ARCS(j,i)} x_{ji}\right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases} \quad (u_i)$$

$$\sum_{j \in ARCS(i,j)} x_{ij} - CC_i \cdot v - q_i \leq 0 \text{ for all } i \quad (cr_i)$$

$$0 \leq x_{ij} \leq 1 \text{ for all } ARCS(i,j)$$

$$q_i \geq 0 \text{ for all } i, v \geq 0$$

Now, Use the Same Trick ...

$$\max z = \sum_{i,j \in ARCS(i,j)} (C_i + D_i) x'_{ij} + \sum_{i,j \in ARCS(i,j)} C_i x_{ij} + \sum_i (MIN_i - C_i) q_i - CT \cdot v$$
subject to
$$\left[\sum_{j \in ARCS(i,j)} x_{ij} + x'_{ij} \right] - \left[\sum_{j \in ARCS(j,i)} x_{ji} + x'_{ji} \right] = \begin{cases} 1, i = s \\ 0, i \neq s \text{ and } i \neq d \\ -1, i = d \end{cases}$$

$$\left[\sum_{j \in ARCS(i,j)} x_{ij} + x'_{ij} \right] - CC_i \cdot v - q_i \leq 0 \text{ for all } i$$

$$x'_{ij} \leq y_i \text{ for all } ARCS(i,j)$$

$$x_{ij} \leq 1 - y_i \text{ for all } ARCS(i,j)$$

$$0 \leq x_{ij} \leq 1, 0 \leq x'_{ij} \leq 1 \text{ for all } ARCS(i,j)$$

$$\sum_i DC_i y_i \leq DT$$

$$0 \leq x_{ij} \leq 1, 0 \leq x'_{ij} \leq 1 \text{ for all } ARCS(i,j)$$

$$q_i \geq 0 \text{ for all } i, v \geq 0$$

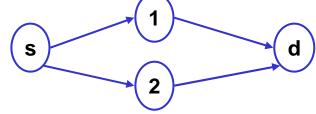
$$y_i \in \{0,1\} \text{ for all } i$$

Morals ...

- We can solve a very important set of two-sided models using elementary LP theory
- A wide range of such models can be solved as a single optimization
- You have to be able to form the dual of one of the sides to do this
- You have to know which constraints in this dual correspond to the variables of that side (why?)

Review of Forming Duals

Let's do a simple version of the project crashing problem



- Assume we can crash the jobs s, 1, and 2
- Let's write down the problem in standard form ...

```
\begin{aligned} & \min \ z = u_d - u_s \\ & \text{subject to} \\ & u_j - u_i + cr_i \ge C_i \text{ for all } i, j \in ARCS(i, j) \quad \left(x_{ij}\right) \\ & - \sum_i CC_i \cdot cr_i \ge -CT \quad \left(v\right) \\ & u_i \text{ unrestricted for all } i \\ & - cr_i \ge MIN_i - C_i \text{ for all } i \quad \left(q_i\right) \end{aligned}
```

Write the Problem in Tableau Form

- This is an exercise you can do in a spreadsheet
- Remember that each row will become a variable in the dual, and each column will become a constraint

dual vars
x(s,1)
x(s,2)
x(1,d)
x(2,d)
q(s)
q(1)
,
q(2)
V

	Z	U(s)	U(1)	U(2)	U(d)	cr(s)	cr(1)	cr(2)	
rs	1	-1	0	0	1	0	0	0	
	0	-1	1	0	0	1	0	0	>= C(s)
	0	-1	0	1	0	1	0	0	>= C(s)
	0	0	-1	0	1	0	1	0	>= C(1)
	0	0	0	-1	1	0	0	1	>= C(2)
	0	0	0	0	0	-1	0	0	>= MIN(s) - C(s)
	0	0	0	0	0	0	-1	0	>= MIN(1) - C(1)
	0	0	0	0	0	0	0	-1	>= MIN(2) - C(2)
	0	0	0	0	0	-CC(s)	-CC(1)	-CC(2)	>= -CT

Write the Transpose to Form the Dual

 Again, you can cut and paste the transpose of the matrix in the spreadsheet

[Z	x(s,1)	x(s,2)	x(1,d)	x(2,d)	q(s)	q(1)	q(2)	V	
dual vars	1	C(s)	C(s)	C(1)	C(2)	MIN(s) - C(s)	MIN(1) - C(1)	MIN(2) - C(2)	-CT	
U(s)	0	-1	-1	0	0	0	0	0	0	= -1
U(1)	0	1	0	-1	0	0	0	0	0	= 0
U(2)	0	0	1	0	-1	0	0	0	0	= 0
U(d)	0	0	0	1	1	0	0	0	0	= 1
cr(s)	0	1	1	0	0	-1	0	0	-CC(s)	<= 0
cr(1)	0	0	0	1	0	0	-1	0	-CC(1)	<= 0
cr(2)	0	0	0	0	1	0	0	-1	-CC(2)	<= 0

- Does this match the dual formulation?
- If not, what doesn't match?

Making the Formulation Match

- The network flow constraints are all equalities
- If you multiply them each by -1, you get the dual formulation back

[Z	x(s,1)	x(s,2)	x(1,d)	x(2,d)	q(s)	q(1)	q(2)	٧	
dual vars	1	C(s)	C(s)	C(1)	C(2)	MIN(s) - C(s)	MIN(1) - C(1)	MIN(2) - C(2)	-CT	
U(s)	0	1	1	0	0	0	0	0	0	= 1
U(1)	0	-1	0	1	0	0	0	0	0	= 0
U(2)	0	0	-1	0	1	0	0	0	0	= 0
U(d)	0	0	0	-1	-1	0	0	0	0	= -1
cr(s)	0	1	1	0	0	-1	0	0	-CC(s)	<= 0
cr(1)	0	0	0	1	0	0	-1	0	-CC(1)	<= 0
cr(2)	0	0	0	0	1	0	0	-1	-CC(2)	<= 0

 This preserves the network convention that flow out is positive

Another Useful Model - Network Interdiction

Two players:

- The network user wants to maximize flow through a capacitated network
- The network interdictor wants to reduce flow by interdicting arcs in the same network
- The interdictor can interdict a limited number of arcs
- Rules of the game
 - Both players know the network and the arc capacities
 - The interdictor chooses which arcs to interdict
 - All interdictions are completely successful
 - The user observes the interdictions and then maximizes flow on the remaining network

The Model (sparing the derivation)

$$\min z = \sum_{i,j \in ARCS(i,j)} U_{ij} b_{ij}$$

subject to

$$|w_i - w_j + b_{ij} + y_{ij}| \ge 0$$
 for all $ARCS(i, j) - (d, s)$

$$w_d - w_s + b_{ds} \ge 1$$

$$Ry \le r$$

$$y_{ij}, b_{ij} \in \{0,1\}$$
 for all $i, j \in ARCS(i, j)$
 $w_i \in \{0,1\}$ for all i

 U_{ij} : upper bound for flow on arc

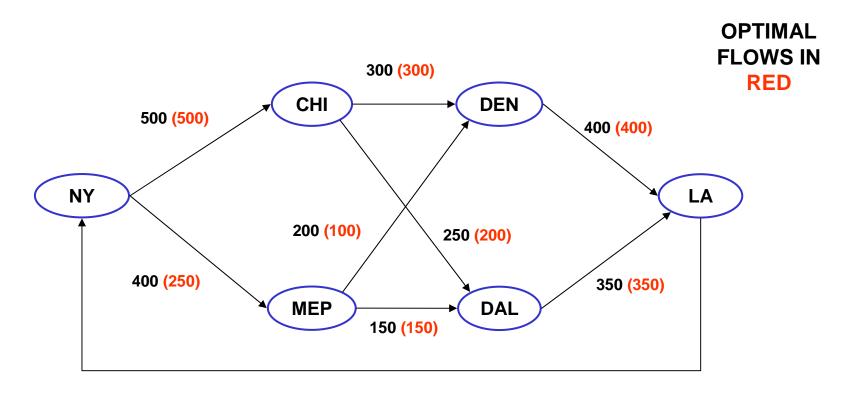
d (s): source(destination) node

R: interdiction consumption parameters

r: interdiction resources available

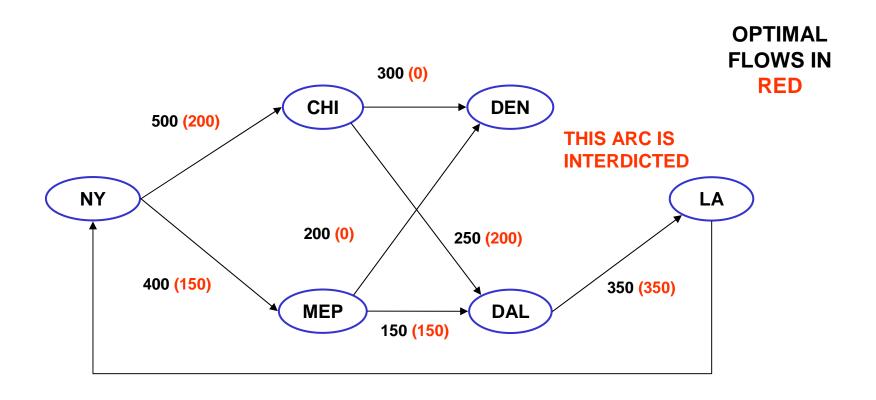
w, b: dual variables for network user

Example: Winston p. 472, #2



Dummy arc: set capacity at large # (like 10000)

Solution with New Model, 1 Arc Interdicted



$$Ry \le r \implies \sum_{i,j \in ARCS(i,j)} y_{ij} \le 1$$

OR 541 Spring 2007 Lesson 9-2, p. 8

Other Notes About This Model

- Interpreting the solution
 - The y's that are 1 give the arcs that are interdicted
 - The objective function gives the resulting max flow
 - The b's that are 1 give the min-cut arcs in the remaining (uninterdicted) network
- Some interesting extensions
 - Suppose interdicting each arc has a an interdiction cost; then, you could let the interdiction be subject to a budget constraint
 - To make an arc "uninterdictable" just bound the corresponding y variable to be equal to 0

A General Attacker – Defender Model

- Suppose *y* represents the defender, and *x* the attacker
- The attacker can take away certain of the defender's resources, but he is limited by his own resources
- The resulting model (in matrix-vector notation) is:

 $\max_{x} \min_{y} z = cy$

subject to

 $Ay \ge b$

 $Fy \le U(1-x)$

 $Cx \leq d$

 $x \ge 0, y \ge 0$

C: attacker's consumption parameters

d: attacker's available resources

c: defender's cost vector

A: consumption parameters for unattackable resources

b: available unattackable resources

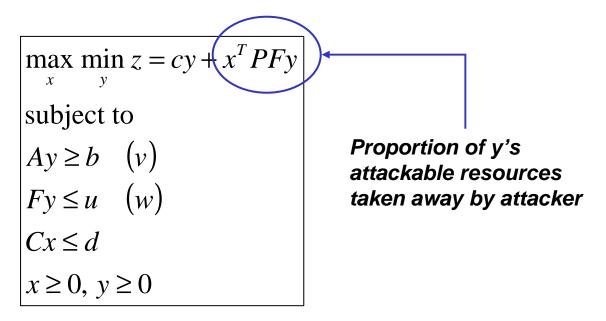
F: consumption parameters for attackable resources

U: available attackable resources = diag(*u*)

Switching Problem to "Cost Attack"

- As before, we can't handle x's and y's in the constraints
- Instead, we penalize y's use of resources that x attacks by attaching penalties in the objective

P: matrix containing penalties for using attacked resources



Converting to a Single Optimization

 As before, take the dual of the inner problem to form a single maximization:

$$\max_{x,v,w} = b^{T}v + uw$$
subject to
$$A^{T}v + F^{T}w \ge c + F^{T}Px$$

$$Cx \le d$$

$$x \ge 0, v \ge 0, w \le 0$$

Parting Notes

- If you build a model like this:
 - You have to choose which side will be represented by the dual
 - You must be careful about choosing penalties; should be as small as possible, otherwise results may be unreasonable
- This is growth area in optimization modeling
- Some useful articles:
 - Brown, Carlyle, Salmeron, and Wood, "Defending Critical Infrastructure"
 - Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K., 2005, "A
 Two-Sided Optimization for Theater Ballistic Missile Defense,"
 Operations Research, 53, pp. 263-275
 - Available at http://www.nps.navy.mil/orfacpag/resumePages/papers/ browngpa.htm

Integer Programming

- Time to drop the divisibility assumption of LP
- Most obvious reason
 - Many resources or decisions restricted to integral values
 - Rounding an LP answer often infeasible or suboptimal
- Less obvious (but maybe more important) reason
 - Integer variables can implement *logical* conditions (if-then, one of many, etc.)
 - Allows the model to make complex decisions
- Another reason
 - Integer variables can be used to approximate nonlinear functions
 - Often employed for things like quantity discounts

These Capabilities Come at a Price

- Integer programming much more difficult
 - We're searching a "lattice" of points, not a continuous space
 - Many problems contain a combinatorially explosive number of possible solutions
- Example: "NOSWOT" problem from MIPLIB
 - 128 total variables 75 binary {0,1}, 25 integer
 - CPLEX 6.0: did not solve after running for several days
 - CPLEX 6.5: solved in 6.2 hours, but required solving 26,521,191 LP's in a branch-and-cut tree
- And what became of NOSWOT?
 - CPLEX guys declared war, examined core problem
 - Added 8 additional constraints; problem now solves in 16 seconds

Morals of Integer Programming

- It is very, very difficult to beat an experienced human scheduler
- If you have an existing heuristic way to get a solution, you should start with that
- Problems that look innocuous can be very tough or impossible
- Add any constraints or exploit any problem structure you can
- Read both Woolsey articles!

Restricting Variables to Integral Values

- For variables restricted to integral values, just declare them as "integer"
- We'll deal with how this works later
- If your problem has no logical conditions, rounding often works
 - Such problems are said to have a feasible "interior"
 - Early IP literature filled with rounding schemes
 - Some still used on enormous problems

Using Binary Variables for Logical Conditions

- Suppose y1, y2, and y3 are binary {0,1} variables
- Let 1 represent true (or "on"), 0 be false (or "off")
- The following table gives a logical expression and the appropriate constraint:

• y3 = y1 and y2
$$y_3 \le y_1$$

 $y_3 \le y_2$
 $y_3 \ge y_1 + y_2 - 1$

• if y1, then y2
$$y_1 \le y_2$$

Fixed Charge Formulations

- Typical situation: have to pay a fixed cost before producing or consuming something
 - Example: have to build a factory before making a car
 - If cars made = 0, you don't need the factory
 - If cars made > 0, you need the factory (but just one!)
- How to do this:
 - Assume x is the variable that depends on some fixed condition
 - Let y be a binary $\{0,1\}$ variable, with 0 = off, 1 = on
 - Let *U* be the upper bound on *x*
 - The following constraint forces x to 0 unless y is 1 (on)

$$Uy \ge x$$

Either-Or Conditions

- Used in situations where one of two constraints apply, depending on a decision variable
- Example: saving for your kid's future
 - y = 0 send kid to vocational school, at cost U_v
 - y = 1 send kid to Harvard, at cost U_h
 - x_v = amount saved for vocational school
 - x_h = amount saved for Harvard
 - The following enforces this condition:

$$U_{v}(1-y) \le x_{v}$$

$$U_{h}y \le x_{h}$$

Generalizing the Either-Or Conditions

- We may have situations where we want to choose among constraints
 - Example: y = 1 means overthrow despot of oil rich country; y = 0 means don't overthrow him
 - Constraints on military expenditures and oil availability may or may not apply, depending on the value of y
- Choosing among two constraints:
 - y = 1 "turns off" constraint 1
 - y = 0 "turns off" constraint 2

$$\sum_{i} a_i^1 x_i \le b_1 \Rightarrow \sum_{i} a_i^1 x_i - b_1 \le M_1 y$$

or

$$\sum_{i} a_i^2 x_i \le b_2 \Rightarrow \sum_{i} a_i^2 x_i - b_2 \le M_2 (1 - y)$$

Choosing K out of N Constraints

- You can extend this to the "K out of N" case:
 - Define $y_1 \dots y_N$ as binary variables
 - The following ensures that only N-K constraints will hold:

$$\sum_{i} a_{i}^{1} x_{i} \leq b_{1} \Rightarrow \sum_{i} a_{i}^{1} x_{i} - b_{1} \leq M_{1} y_{1}$$

$$\vdots$$

$$\sum_{i} a_{i}^{N} x_{i} \leq b_{N} \Rightarrow \sum_{i} a_{i}^{N} x_{i} - b_{N} \leq M_{N} y_{N}$$

$$\sum_{i} y_{i} \leq K$$

$$y_{i} \in \{0,1\} \text{ for all } i$$

Functions or Variables with N Possible Values

- Sometimes a function or variable can only take on a set of values
 - Example: raw materials available only in certain lot sizes
 - Only certain combinations of waist size and sleeve length available
- Let $D_1 \dots D_N$ be the values the function can take on; then:

$$\sum_{j} a_{j} x_{j} = \sum_{i} D_{i} y_{i}$$

$$\sum_{i} y_{i} = 1$$

$$y_{i} \in \{0,1\} \text{ for all } i$$

If-Then Conditions

- If the first condition applies, then so must the second
- Example from Winston:

$$f(x) > 0 \Rightarrow g(x) \ge 0$$

This is logically equivalent to an either-or condition:

$$f(x) \le 0$$
 OR $g(x) \ge 0$ OR BOTH

• So, if G_l is a lower bound on g(x), F_u is an upper bound on f(x), and y is binary, the following constraints implement the condition:

$$g(x) \ge G_l * y$$

$$f(x) \le F_u * (1 - y)$$

$$y \in \{0,1\}$$