Week	Date	Read	Topic 1	Topic 2	Topic 3	Homework
1	25-Jan	Ch. 1 (all), Ch.	Intro to OR	Course Structure	LP Graphical Solution	p. 56: 1,4
		2(review), Ch. 3.1-3.3	History (Morse)	Optimization taxonomy	(3.2)	p. 64: 3,5
			Recent Applications	LP history	Special cases (3.3)	p. 69: 1,2,3
			Where to Look for Info	LP assumptions (3.1)	Admin – student info	Try: p. 69, 7
			Instructor Info		Admin – student survey	
2	1-Feb	Ch. 3.3-3.12	Standard NPS formulation	Formulation II	Formulation III	p. 71: 1
			format	Covering, Staffing,	Multiperiod planning	p. 72: 2,
			Formulation I	Scheduling		p 76:6
			Product mix	Blending		p. 93:6,10
						p. 104: 3;4
3	8-Feb		Formulation IV		Standard Form	Handout, #4
		4.2, 4.14	Recourse Models (LINDO	language intro, examples	Simplex Intro	(formulate only)
			Handout)			p. 127: 3
						Formulate and solve
						with MPL/CPLEX:
						p. 123: 57
4	15-Feb	Ch 4.7-4.8, 4.11-4.13,	Tableau I	Tableau II	Degeneracy continued	p. 149: 3,7
			Tableau mechanics, stopping	Alternative optima	Big M, Two-Phase	p. 154: 2, 8
			criterion	Unbounded LPs		p. 158: 3
			Tableau adjustments	Degeneracy and cycling		p. 178: 3, find initial
						BFS using Two-Phase
5	22-Feb	Ch. 6.2, 10.1-10.2	Matrix form of simplex	Duality I	Duality II	p. 275: 2 (find z, x1,
		Ch. 6.5-6.11	Revised Simplex	Formulating the Dual	Shadow prices/reduced	x2, s1, s2 via matrix
				Economic interpretation	costs	formulas)
				Dual Theorems	Complementary	p. 567:1 (use product
					slackness	form of inverse)
						p. 301: 5
						p: 313: 2a (also show
						dual of the dual is the
						primal)
6	1-Mar	Ch 6.10	Duality III	Review		p. 322: 6 p. 335: 2a
U	1-ivial	CII 0.10	Elastic constraints/dual	Keview		class example, #2
			bounds			ciass example, #2
			Dual simplex/adding			
			constraints			
			Constraints			

7	8-March	MIDTERM				
8	21 March	7.1-7.3 (formulations only), 8.1-8.5	Network terminology Min cost network flow formulation	Network formulations: transportation, transshipment, assignment Maximum weight closure	Critical Path Method (CPM) CPM primal, dual formulations CPM with expediting (new)	p. 403: 5 p. 472: 2a p. 472: 3d
9	22-March	Ch. 9.1	Intro to max-min models Shortest path with interdiction CPM with interdiction and expediting (new)	General max-min problem formulation (new)	IP Formulation I Integral variables Logical conditions: fixed charge, either-or, if-then	p. 472: 3g in-class HW problem p. 504: 18, solve with MPL
10	29-March	Ch. 9.2, 9.3, 9.4	IP Formulation II Limiting variables Economies of scale SOS variables	IP Formulation III Covers Packs Partitions	LP relaxations Network problem integrality Solution implications Branch-and-bound: theory	p. 507: 29 p. 504: 18, solve with MPL, manual branch- and-bound
11	5-April	MPL Manual pp. 90- 107, CPLEX Handout	Presolve methods Strong formulations Branch priorities Cuts	Cuts CPLEX MIP Options	Constraint-satisfaction problems In-class challenge; MIP formulations	p. 503: 14, solve with reduction rules p. 549: 3 Sudoku problem
12	12-April	Ch. 11.1-11.5	NLP I Introduction/Taxonomy Convexity/Concavity Line Searches	NLP II Multivariate Unconstrained Optimization Gradients	NLP III Lagrange multiplier methods	p. 628: 2 p. 636: 6
13	19-April	Ch. 11.6-11.10	NLP IV Karush-Kuhn-Tucker Conditions	NLP V Quadratic Programming	Additional Material TBD	
14	26-April	Previous Course Projects				PROJECT DUE
15	3-May	Review	Total Course Picture Formulation	LP Theory Network Theory IP Theory	Dual and Max-Min Theory NLP Theory	
	10-May	FINAL				