
Formulation IV: Recourse Models

• Have stuck with basic LP assumptions so far
• Proportionality, additivity, divisibility, certainty
• Have vaguely discussed relaxing divisibility with integer variables

• Can we relax the certainty assumption?
• Examples so far contain many things that could be (or are) random
• Seems particularly bad to take randomness out of things like

OR 541 Fall 2009
Lesson 3-1, p. 1

• Seems particularly bad to take randomness out of things like
customer demand

• Are there any ways to represent randomness in an LP?

• Falls into a general area called stochastic programming
• Models range from straightforward to very, very tough
• Math can be very difficult; I will present one simple type of SP
• Good references: Schrage (LINDO), Kall and Wallace

(http://home.himolde.no/~wallace/manujw.pdf - free book!)

General Motivation: Recourse Models

• Model type considered here is as follows:
• We make some decision
• Nature chooses an outcome scenario (we know the distribution of

the scenarios, though)
• We take some action (called recourse) based on the natural

outcome

OR 541 Fall 2009
Lesson 3-1, p. 2

• Corrects a very basic flaw in a great deal of OR work
• Analyst to decision maker : “You tell me the future, and I’ll tell

you what you should do. If you predict the future wrong, it’s your
problem.”

• Decision maker to analyst : “If I knew what the future was, I
wouldn’t need you. Get the %$#@^&!! out of my office.”

Formulation Rules

• Certainty Equivalence Theorem:
• If the randomness or unpredictability in problem data exists solely in

the objective function coefficients, it is correct to solve the LP in
regular form after simply using expected values for the random
coefficients in the objective (Schrage, p. 212)

• Random elements elsewhere? Not covered in this course

OR 541 Fall 2009
Lesson 3-1, p. 3

[]),(min sxhEXPcx s+

cost of initial decisions expected recourse cost
over all scenarios s

• So, we set the problem up to optimize

Example: Winston, p. 76, #6, Modified

• The issue with a lot of these problems is that the
demand is random (cops per shift)

• Consider a modified problem:
• Normal shifts are 12 hours (no 18-hour shifts)
• We can, however, hire adjunct cops at the following rates:

• 12am - 6am, 6pm - 12am: double time ($8 an hour)

OR 541 Fall 2009
Lesson 3-1, p. 4

• 12am - 6am, 6pm - 12am: double time ($8 an hour)
• 6am-12pm, 12pm-6pm: time-and-a-half ($6 an hour)

• Don’t know if we need adjuncts in advance
• However, we have 3 typical scenarios with probabilities:

Shift
12am -6 am 12 10 6
6am -12 pm 8 4 10
12pm -6pm 6 18 11
6pm -12am 15 12 16
scenario prob 0.5 0.25 0.25

Demand

Now, What Do We Do?

• First attempt: solve normal LP for different scenarios
• Indices

• t = shifts {a12,a6,p12,p6}

• Data
• REQt = cops/shift required
• NCOST = cost/hr for scheduled shift cops ($4)

OR 541 Fall 2009
Lesson 3-1, p. 5

• NCOST = cost/hr for scheduled shift cops ($4)
• NSHIFT = length of a normal shift in hours (12)

• Variables
• cop t = number of cops starting on shift t
• totcost = total cost of cops

• Objective

∑=
t

t
cop

copNCOSTNSHIFTtotcost **min

Example, cont’d

• Constraints

• Solutions for the 3 scenarios:

bounds)upper vity (nonnegati allfor max0

demands)(meet allfor 1

+≤≤
≥+−

tREQcop

tREQcopcop

t
t

t

ttt

note

Shift 1 2 3
Scenario

note

OR 541 Fall 2009
Lesson 3-1, p. 6

• What if we choose the scenario 1 answer?

Shift 1 2 3
12am -6 am 8 4 10
6am -12 pm 0 0 0
12pm -6pm 11 18 11
6pm -12am 4 6 5
Total cost 1104 1344 1248

Performance of Scenario 1 Answer

• We can compute the overtime we’d see for the other
scenarios, using the Scenario 1 solution:

Shift 1 2 3
12am -6 am 0 0 0
6am -12 pm 0 0 2
12pm -6pm 0 7 0

Scenario

OR 541 Fall 2009
Lesson 3-1, p. 7

• So, the total expected cost is $1104 + expected
overtime

• This is $1104 + (0.5*0 +0.25*252 + 0.25*120) = $1197
• An 8% increase

6pm -12am 0 0 1
total overtime cost 0 252 120

Other Schemes; Introducing the Recourse LP

• Some alternative approaches
• Optimize for max demand: expected total cost = $1440
• Optimize for average demand: expected total cost = $1239
• Average the optimal answers for each scenario: expected total

cost = $1311

• Clearly, we’re thrashing - try a new formulation

OR 541 Fall 2009
Lesson 3-1, p. 8

• Clearly, we’re thrashing - try a new formulation
• Added indicies:

• s = scenarios {s1,s2,s3}

• Added data:
• REQst = cops/shift required for scenario s
• OTCOSTt = overtime cost/hr for adjunct cops
• OSHIFT = length of an overtime shift in hours (6)
• PROBs = probability of scenario s

Remainder of New Model

• Added variables
• ovr st = number adjunct cops for shift t, scenario s

• New objective function

cost of initial decisions

OR 541 Fall 2009
Lesson 3-1, p. 9

∑ ∑

∑

+=

s t
stts

t
t

ovrcop

ovrOTCOSTOSHIFTPROB

copNCOSTNSHIFTtotcost

**min
,

expected recourse cost
over all scenarios s

Remainder of New Model (cont’d)

• Constraints

bounds)upper vity (nonnegati s, allfor max0

bounds)upper vity (nonnegati s, allfor max0

demands)(meet s, allfor 1

+≤≤

+≤≤
≥++−

tREQovr

tREQcop

tREQovrcopcop

st
st

st

st
st

t

ststtt

OR 541 Fall 2009
Lesson 3-1, p. 10

• Now, how hard was that?

And, What Answer Do We Get?

• A totally unexpected one:

Shift cop(t) 1 2 3
12am -6 am 4 0 0 0
6am -12 pm 0 4 0 6
12pm -6pm 7 0 11 4

ovr(s,t)

OR 541 Fall 2009
Lesson 3-1, p. 11

• Total expected cost: $1185
• Would have been difficult (or impossible) to come up
with this using some “external” method

12pm -6pm 7 0 11 4
6pm -12am 8 0 0 1
Costs 912 144 396 408

Commercial Modeling Languages & Solvers

• These days are over:
• The days of writing your own LP code
• The days of never solving anything as a student
• The days of writing FORTRAN for model development (NOTE: you

still may write code for model implementation)
• The days of renting time on a Cray to solve a big problem

OR 541 Fall 2009
Lesson 3-2, p. 1

• What is the common architecture?
• Commercial solver (e.g., CPLEX, XPRESS, OSL, MINOS, CONOPT)

• Require a model be fed to them in a particular format
• Allow considerable access to solver options

• Algebraic modeling language (e.g. MPL, GAMS, AMPL)
• Express the optimization in algebraic form
• Translate input data into model coefficients
• Generate model in solver’s native form
• Retrieve solver output and allow manipulation

What We Will Use in this Course

• Modeling language: MPL
• Available for download from Maximal Software

(www.maximalsoftware.com)
• PDF’s for user’s manual, tutorial on course home page

• Commercial Solver: CPLEX
• Extremely powerful LP and MIP solver

OR 541 Fall 2009
Lesson 3-2, p. 2

• Extremely powerful LP and MIP solver
• Tremendous solution time improvements over last 10 years
• Available via Maximal Software with a 6-month student license

An Example of Commercial Solver Progress

• USAF Patient Distribution System (PDS) problems
• From Bixby (Operations Research, vol. 50, No. 1)
• Modeled patient evacuation from a major war
• PDS 90: 507,771 variables, 142,823 constraints, 1.2M nonzeros
• Unsolvable when first proposed (1990) by any code

• CPLEX progress on PDS 90 (run on 300MHZ SPARC)

OR 541 Fall 2009
Lesson 3-2, p. 3

• CPLEX progress on PDS 90 (run on 300MHZ SPARC)
• CPLEX 1.0 (1988): could not solve problem
• CPLEX 5.0 (1994): 16.67 hours
• Special Code (Castro 2000) 6 hours
• CPLEX 7.1 primal (2000): 41 minutes
• CPLEX 7.1 dual (2000): 320 seconds

• 99.5% reduction in solve time!

When to Use an Algebraic Language

• Development
• For almost any straightforward application
• Makes debugging much easier
• Leaves behind a tool for the inevitable future changes
• Much faster to use than writing C or VB code

• Implementation

OR 541 Fall 2009
Lesson 3-2, p. 4

• Implementation
• Algebraic modeling languages very slow (order of magnitude

worse than writing your own generator)
• Don’t use them if you require real-time response
• Can’t be used for “indirect” methods (like decomposition)
• Generally do not allow access to all solver options
• Are niche products, with uneven levels of support

• NOTE: these languages are improving, though

An MPL Example - the Cop Scheduling SP

• MPL file structure
• TITLE (optional)
• INDEX
• DATA
• DECISION VARIABLES
• MODEL (this is the objective function)

OR 541 Fall 2009
Lesson 3-2, p. 5

• MODEL (this is the objective function)
• SUBJECT TO (these are the constraints)
• BOUNDS (as needed)
• END

• Has a close correspondence to NPS standard format

MPL Code for SP Problem; Indices and Data

TITLE
RecourseScheduling;

INDEX
s := (s1,s2,s3); { scenarios }
t := (a12,a6,p12,p6) CIRCULAR; { shifts }

DATA
SPROB[s] := (0.5,0.25,0.25); { probability of scen ario }

NOTE: CIRCULAR
definition – what’s this
about?

OR 541 Fall 2009
Lesson 3-2, p. 6

REQ[s,t] := (12,8,6,15, { cops/shift req’d, by sce nario }
10,4,18,12,
6,10,11,16);

OTCOST[t] := (8,6,6,8); { overtime cost/hr in $ }

NCOST := 4; {cost/hr of straight (scheduled) time i n $ }

NSHIFT := 12; { length of a normal shift in hours }

OSHIFT := 6; {length of an overtime shift in hours }

MAXREQ := 18; { max requirement for any shift }

MPL Variable and Model Definitions

DECISION VARIABLES

cop[t]; { number of scheduled cops starting on s hift t }
ovr[s,t]; { number of overtime cops working shift t under scenario s }

MODEL

MIN totexpcost = SUM(t: NSHIFT*NCOST*cop[t]) +
SUM(s,t: SPROB[s]*OSHIFT*OTCOST[t]*ovr[s,t]);

OR 541 Fall 2009
Lesson 3-2, p. 7

SUM(s,t: SPROB[s]*OSHIFT*OTCOST[t]*ovr[s,t]);

NOTES:
• use of lower case for variables, upper case for dat a (style, not req’d by MPL)
• MPL is CASE SENSITIVE by default – there is a switch to turn this off
• no explicit variable declaration for objective func tion value
• explicit use of indicies in sums (again, style; MPL doesn’t seem to care)
• no explicit constants in equations (style)

MPL Constraints and Bounds

SUBJECT TO

demand[s,t]: {shift demand constraints}

cop[t]+cop[t-1]+ovr[s,t] < REQ[s,t] ;

BOUNDS

cop[t] <= MAXREQ;

OR 541 Fall 2009
Lesson 3-2, p. 8

cop[t] <= MAXREQ;
ovr[s,t] <= REQ[s,t];

END

NOTE:
• use of circular set index in constraint
• implicit assumption that variables are nonnegative
• mistake in inequality constraint (save for debuggin g)

So We Run It, and It’s Wrong

• Initial answer: 0 (look at View/Files/COPSP.sol)
• No money spent, but no cops scheduled
• No overtime either
• What the hell is going on?

• Common trick: fix a variable and see what blows up
• Change one bound:

OR 541 Fall 2009
Lesson 3-2, p. 9

• Change one bound:

BOUNDS

cop[t<>”a12”] <= MAXREQ;
cop[t=“a12”] = 13;
ovr[s,t] <= REQ[s,t];

END

Note:
• should be legit; can always hire

more than required
• MPL mechanisms to restrict

certain indicies

Now It’s Infeasible

OR 541 Fall 2009
Lesson 3-2, p. 10

Now, How Do We Find What Blew Up?

• Go to View/Files/COPSP.iis
• “IIS” is a CPLEX option that generates a the set of inconsistent

constraints
• Here’s what’s in it:

\Problem name: RecourseScheduling

Minimize
subject to
\Rows in the iis:

R10: C1 + C2 + C14 <= 10
\ Columns in the iis:

OR 541 Fall 2009
Lesson 3-2, p. 11

• What the #$%^&@!! does this mean?
• MPL does not pass actual row and variable names to CPLEX; it

maps names to generic row and column indices
• We need to look at the mapping to see what’s what

\ Columns in the iis:
Bounds

C1 = 13
C2 >= 0
C14 >= 0

End

MPL Mapping File

• You have to turn on the option to generate a map file
• Go to Options/General Solver and check “Solution Mapping File”

box under “Generate Files”

OR 541 Fall 2009
Lesson 3-2, p. 12

Looking at the Map File

MAPPING RecourseScheduling

VARIABLE DEFINITIONS
cop[t] (4)
ovr[s,t] (12)

CONSTRAINT DEFINITIONS
demand[s,t] (12)

OR 541 Fall 2009
Lesson 3-2, p. 13

VARIABLE MAPPINGS
1) C1, cop, a12, (we fixed at 13)
2) C2, cop, a6,

14) C14, ovr, s3, a 6,

CONSTRAINT MAPPINGS

10) R10, demand, s3, a 6,

END

Now We See It

• Look at the IIS again:
\Problem name: RecourseScheduling

Minimize
subject to
\Rows in the iis:

R10: C1 + C2 + C14 <= 10
\Columns in the iis:
Bounds

OR 541 Fall 2009
Lesson 3-2, p. 14

• We’ve reversed the inequality! We should make sure we
have more cops than the requirement, not less!

Bounds
C1 = 13
C2 >= 0
C14 >= 0

End

With the Fix, It Runs Fine

• Repair constraints and restore bounds:

SUBJECT TO

demand[s,t]: {shift demand constraints}

cop[t]+cop[t-1]+ovr[s,t] > REQ[s,t] ;

BOUNDS

OR 541 Fall 2009
Lesson 3-2, p. 15

• And you get the optimal solution of $1185

cop[t] <= MAXREQ;
ovr[s,t] <= REQ[s,t];

END

Other MPL Gotchas

• Pay attention to the unusual rules for formulas with
parentheses (user manual, sec. 9.8)

• Be careful with set manipulations; lots of power
available, lots of unintended effects possible

• Don’t start index names with a number and then append

OR 541 Fall 2009
Lesson 3-2, p. 16

• Don’t start index names with a number and then append
letters (e.g, “12a”); MPL doesn’t like this

• I’m learning MPL as well; I’ll transmit more as the course
goes along

Introduction to the Simplex Method

• By now, you suspect there is some algorithm for
solving LPs
• Can’t use graphical methods in n-space
• CPLEX shows things like “Phase I” and “iterations”

• Dantzig (1947) developed original simplex method
• Implementation not really useable until mid-50’s

OR 541 Fall 2009
Lesson 3-3, p. 1

• Implementation not really useable until mid-50’s
• Improvement has come from intense development of numerical

linear algebra (plus many other tricks)

• Despite competition from interior-point schemes, the
simplex method hangs on, because it’s:
• Fast
• Well-understood
• Has good restart properties (essential for IP)

Recall the Graphical Scheme

• We drew the
feasible region, and
then moved to
objective function
contour to the “best”

5

6

7

8

9

10

x2

Optimum: x1=2, x2=6

Z=36

Z=27

OR 541 Fall 2009
Lesson 3-3, p. 2

contour to the “best”
extreme point

0

1

2

3

4

5

0 1 2 3 4 5 6 7

x1

x2

Factory 1 Capacity Factory 2 Capacity

Factory 3 Capacity

Z=15

Recall Also the Linear Algebra Ideas

• A typical LP is in this form:

• To get it into something that looks like a linear algebra
problems, we add slack variables make the constraints

0

 tosubject

 max

≥
≤
=

x

bAx

cxz

OR 541 Fall 2009
Lesson 3-3, p. 3

problems, we add slack variables make the constraints
equalities:

0

0

 tosubject

 max

≥
≥
=+
=

s

x

bsAx

cxz

Basic Solutions

• We know how to score any proposed solution
• The question is, how do we find solutions that obey the
constraints?

• Terminology for the system Ax + s = b :
• n variables, m equations (constraints), assume n > m
• Basic solution: a set of m variables that satisfies Ax+s=b ; the

OR 541 Fall 2009
Lesson 3-3, p. 4

• Basic solution: a set of m variables that satisfies Ax+s=b ; the
others are set to 0 (note that a basic variable may be 0 also)

• Basic (nonbasic) variable : variable (not) in the basis
• Basic feasible solution: a basic solution that also satisfies the

nonnegativity conditions x >0, s>0
• Adjacent basic feasible solutions: solutions with m-1 basic

variables in common

Bases and Extreme Points: Where to Look

• We’ve shown before that the optimal solution (if there
is one) will occur at an extreme point

• It turns out that BFSs are, in fact, extreme points!
• So, all we have to do is search possible bases!

• But doing it this way would be bad …

m

n

OR 541 Fall 2009
Lesson 3-3, p. 5

• But doing it this way would be bad …
• n = 1000, m = 200 means 6.62 x 10215 possible bases
• Clearly, simplex is more efficient than that

• To build an algorithm, we need:
• A way to start
• A way to take improving steps
• A way to terminate with a guaranteed optimum (if problem is

feasible)

Look Again at the Graphical LP

5

6

7

8

9

10

x2

• Suppose we start at
(0,0)

• What’s the BFS, by the
way?

• It’s s1 and s2

• We have two adjacent
extreme points

Z=30

)production negative (no 0

capacity) 3(plant 1823

capacity) 2(plant 122

capacity) 1(plant 4

:subject to

53max

21

21

2

1

21

≥
≤+

≤
≤

+=

,xx

xx

x

 x

xxZ

OR 541 Fall 2009
Lesson 3-3, p. 6

0

1

2

3

4

5

0 1 2 3 4 5 6 7

x1

x2

Factory 1 Capacity Factory 2 Capacity

Factory 3 Capacity

Feasible region

extreme points
• Which one would be the

better one to move to?
• (0,6); why?

• Once we get to the best
extreme point, how do
we know we’re there?

• Convexity

Z=12

5

6

7

8

9

10

x2
How Do We Know That We’re Optimal?

• Here, we thought we
were done, but there
was a better point!

• What’s the problem with
this feasible region?

• Not convex

OR 541 Fall 2009
Lesson 3-3, p. 7

0

1

2

3

4

5

0 1 2 3 4 5 6 7

x1

x2

Factory 1 Capacity Factory 2 Capacity

Factory 3 Capacity

Feasible region

• Not convex

• What LP assumption is
violated?

• Linearity (in new constraint)

• So, we can guarantee that
if all adjacent points are
worse (or equal), we’re
optimal!

