
Formulation IV: Recourse Models

• Have stuck with basic LP assumptions so far
• Proportionality, additivity, divisibility, certainty
• Have vaguely discussed relaxing divisibility with integer variables

• Can we relax the certainty assumption?
• Examples so far contain many things that could be (or are) random
• Seems particularly bad to take randomness out of things like 
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• Seems particularly bad to take randomness out of things like 
customer demand

• Are there any ways to represent randomness in an LP?

• Falls into a general area called stochastic programming
• Models range from straightforward to very, very tough
• Math can be very difficult; I will present one simple type of SP
• Good references: Schrage (LINDO), Kall and Wallace

(http://home.himolde.no/~wallace/manujw.pdf - free book!)



General Motivation: Recourse Models

• Model type considered here is as follows:
• We make some decision
• Nature chooses an outcome scenario (we know the distribution of 

the scenarios, though)
• We take some action (called recourse) based on the natural 

outcome
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• Corrects a very basic flaw in a great deal of OR work
• Analyst to decision maker : “You tell me the future, and I’ll tell 

you what you should do. If you predict the future wrong, it’s your 
problem.”

• Decision maker to analyst : “If I knew what the future was, I 
wouldn’t need you. Get the %$#@^&!! out of my office.”



Formulation Rules

• Certainty Equivalence Theorem: 
• If the randomness or unpredictability in problem data exists solely in 

the objective function coefficients, it is correct to solve the LP in 
regular form after simply using expected values for the random 
coefficients in the objective (Schrage, p. 212)

• Random elements elsewhere? Not covered in this course
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[ ]),(min sxhEXPcx s+

cost of initial decisions expected recourse cost 
over all scenarios s

• So, we set the problem up to optimize



Example: Winston, p. 76, #6, Modified

• The issue with a lot of these problems is that the 
demand is random (cops per shift)

• Consider a modified problem:
• Normal shifts are 12 hours (no 18-hour shifts)
• We can, however, hire adjunct cops at the following rates:

• 12am - 6am, 6pm - 12am: double time ($8 an hour)
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• 12am - 6am, 6pm - 12am: double time ($8 an hour)
• 6am-12pm, 12pm-6pm: time-and-a-half ($6 an hour)

• Don’t know if we need adjuncts in advance
• However, we have 3 typical scenarios with probabilities:

Shift
12am -6 am 12 10 6
6am -12 pm 8 4 10
12pm -6pm 6 18 11
6pm -12am 15 12 16
scenario prob 0.5 0.25 0.25

Demand



Now, What Do We Do?

• First attempt: solve normal LP for different scenarios
• Indices

• t = shifts {a12,a6,p12,p6}

• Data
• REQt = cops/shift required
• NCOST = cost/hr for scheduled shift cops ($4)
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• NCOST = cost/hr for scheduled shift cops ($4)
• NSHIFT = length of a normal shift in hours (12)

• Variables
• cop t = number of cops starting on shift t
• totcost = total cost of cops

• Objective

∑=
t

t
cop

copNCOSTNSHIFTtotcost **min



Example, cont’d

• Constraints

• Solutions for the 3 scenarios:
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• What if we choose the scenario 1 answer?

Shift 1 2 3
12am -6 am 8 4 10
6am -12 pm 0 0 0
12pm -6pm 11 18 11
6pm -12am 4 6 5
Total cost 1104 1344 1248



Performance of Scenario 1 Answer

• We can compute the overtime we’d see for the other 
scenarios, using the Scenario 1 solution:

Shift 1 2 3
12am -6 am 0 0 0
6am -12 pm 0 0 2
12pm -6pm 0 7 0

Scenario
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• So, the total expected cost is $1104 + expected 
overtime

• This is $1104 + (0.5*0 +0.25*252 + 0.25*120) = $1197
• An 8% increase

6pm -12am 0 0 1
total overtime cost 0 252 120



Other Schemes; Introducing the Recourse LP

• Some alternative approaches 
• Optimize for max demand: expected total cost = $1440
• Optimize for average demand: expected total cost = $1239
• Average the optimal answers for each scenario: expected total 

cost = $1311

• Clearly, we’re thrashing - try a new formulation
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• Clearly, we’re thrashing - try a new formulation
• Added indicies:

• s = scenarios {s1,s2,s3}

• Added data:
• REQst = cops/shift required for scenario s
• OTCOSTt = overtime cost/hr for adjunct cops
• OSHIFT = length of an overtime shift in hours (6)
• PROBs = probability of scenario s



Remainder of New Model

• Added variables
• ovr st = number adjunct cops for shift t, scenario s

• New objective function

cost of initial decisions
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Remainder of New Model (cont’d)

• Constraints
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• Now, how hard was that?



And, What Answer Do We Get?

• A totally unexpected one:

Shift cop(t) 1 2 3
12am -6 am 4 0 0 0
6am -12 pm 0 4 0 6
12pm -6pm 7 0 11 4

ovr(s,t)
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• Total expected cost: $1185
• Would have been difficult (or impossible) to come up 
with this using some “external” method

12pm -6pm 7 0 11 4
6pm -12am 8 0 0 1
Costs 912 144 396 408



Commercial Modeling Languages & Solvers

• These days are over:
• The days of writing your own LP code
• The days of never solving anything as a student
• The days of writing FORTRAN for model development (NOTE: you 

still may write code for model implementation)
• The days of renting time on a Cray to solve a big problem
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• What is the common architecture?
• Commercial solver (e.g., CPLEX, XPRESS, OSL, MINOS, CONOPT)

• Require a model be fed to them in a particular format
• Allow considerable access to solver options

• Algebraic modeling language (e.g. MPL, GAMS, AMPL)
• Express the optimization in algebraic form
• Translate input data into model coefficients
• Generate model in solver’s native form
• Retrieve solver output and allow manipulation



What We Will Use in this Course

• Modeling language: MPL
• Available for download from Maximal Software 

(www.maximalsoftware.com)
• PDF’s for user’s manual, tutorial on course home page

• Commercial Solver: CPLEX
• Extremely powerful LP and MIP solver
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• Extremely powerful LP and MIP solver
• Tremendous solution time improvements over last 10 years
• Available via Maximal Software with a 6-month student license



An Example of Commercial Solver Progress

• USAF Patient Distribution System (PDS) problems
• From Bixby (Operations Research, vol. 50, No. 1)
• Modeled patient evacuation from a major war
• PDS 90: 507,771 variables, 142,823 constraints, 1.2M nonzeros
• Unsolvable when first proposed (1990) by any code

• CPLEX progress on PDS 90 (run on 300MHZ SPARC)
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• CPLEX progress on PDS 90 (run on 300MHZ SPARC)
• CPLEX 1.0 (1988): could not solve problem
• CPLEX 5.0 (1994): 16.67 hours
• Special Code (Castro 2000) 6 hours
• CPLEX 7.1 primal (2000): 41 minutes
• CPLEX 7.1 dual (2000): 320 seconds

• 99.5% reduction in solve time!



When to Use an Algebraic Language

• Development 
• For almost any straightforward application
• Makes debugging much easier
• Leaves behind a tool for the inevitable future changes
• Much faster to use than writing C or VB code

• Implementation
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• Implementation
• Algebraic modeling languages very slow (order of magnitude 

worse than writing your own generator)
• Don’t use them if you require real-time response
• Can’t be used for “indirect” methods (like decomposition)
• Generally do not allow access to all solver options
• Are niche products, with uneven levels of support

• NOTE: these languages are improving, though



An MPL Example - the Cop Scheduling SP 

• MPL file structure
• TITLE (optional)
• INDEX
• DATA
• DECISION VARIABLES
• MODEL (this is the objective function)
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• MODEL (this is the objective function)
• SUBJECT TO (these are the constraints)
• BOUNDS (as needed)
• END

• Has a close correspondence to NPS standard format



MPL Code for SP Problem; Indices and Data

TITLE
RecourseScheduling;

INDEX
s := (s1,s2,s3);                { scenarios }
t := (a12,a6,p12,p6) CIRCULAR;  { shifts }

DATA
SPROB[s]  := (0.5,0.25,0.25); { probability of scen ario }

NOTE:  CIRCULAR 
definition – what’s this 
about?
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REQ[s,t] := (12,8,6,15,  { cops/shift req’d, by sce nario }
10,4,18,12,
6,10,11,16);

OTCOST[t] := (8,6,6,8);  { overtime cost/hr in $ }

NCOST := 4; {cost/hr of straight (scheduled) time i n $ }

NSHIFT := 12; { length of a normal shift in hours }

OSHIFT := 6; {length of an overtime shift in hours }

MAXREQ := 18; { max requirement for any shift }



MPL Variable and Model Definitions

DECISION VARIABLES

cop[t];    { number of scheduled cops starting on s hift t }
ovr[s,t];  { number of overtime cops working shift t under scenario s }

MODEL

MIN  totexpcost = SUM(t: NSHIFT*NCOST*cop[t]) + 
SUM(s,t: SPROB[s]*OSHIFT*OTCOST[t]*ovr[s,t]);
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SUM(s,t: SPROB[s]*OSHIFT*OTCOST[t]*ovr[s,t]);

NOTES:
• use of lower case for variables, upper case for dat a (style, not req’d by MPL)
• MPL is CASE SENSITIVE by default – there is a switch  to turn this off
• no explicit variable declaration for objective func tion value
• explicit use of indicies in sums (again, style; MPL  doesn’t seem to care)
• no explicit constants in equations (style)



MPL Constraints and Bounds

SUBJECT TO

demand[s,t]:  {shift demand constraints}

cop[t]+cop[t-1]+ovr[s,t]  <  REQ[s,t] ;

BOUNDS

cop[t]   <= MAXREQ; 
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cop[t]   <= MAXREQ; 
ovr[s,t] <= REQ[s,t];  

END

NOTE:
• use of circular set index in constraint
• implicit assumption that variables are nonnegative
• mistake in inequality constraint (save for debuggin g)



So We Run It, and It’s Wrong

• Initial answer: 0 (look at View/Files/COPSP.sol)
• No money spent, but no cops scheduled
• No overtime either
• What the hell is going on?

• Common trick: fix a variable and see what blows up
• Change one bound:
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• Change one bound:

BOUNDS

cop[t<>”a12”]   <= MAXREQ; 
cop[t=“a12”] = 13;
ovr[s,t] <= REQ[s,t];  

END

Note:
• should be legit; can always hire 

more than required
• MPL mechanisms to restrict 

certain indicies



Now It’s Infeasible
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Now, How Do We Find What Blew Up?

• Go to View/Files/COPSP.iis
• “IIS” is a CPLEX option that generates a the set of inconsistent 

constraints
• Here’s what’s in it:

\Problem name: RecourseScheduling

Minimize
subject to
\Rows in the iis:

R10: C1 + C2 + C14 <= 10
\ Columns in the iis:
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• What the #$%^&@!! does this mean?
• MPL does not pass actual row and variable names to CPLEX; it 

maps names to generic row and column indices
• We need to look at the mapping to see what’s what

\ Columns in the iis:
Bounds

C1 = 13
C2 >= 0
C14 >= 0

End



MPL Mapping File

• You have to turn on the option to generate a map file
• Go to Options/General Solver and check “Solution Mapping File” 

box under “Generate Files”
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Looking at the Map File

MAPPING RecourseScheduling

VARIABLE DEFINITIONS
cop[t]  (4)
ovr[s,t]  (12)

CONSTRAINT DEFINITIONS
demand[s,t]  (12)
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VARIABLE MAPPINGS
1)    C1,                 cop,               a12, ( we fixed at 13)
2)    C2,                 cop,               a6,  

14)    C14,                ovr,               s3, a 6,  

CONSTRAINT MAPPINGS

10)    R10,                demand,            s3, a 6,  

END



Now We See It

• Look at the IIS again:
\Problem name: RecourseScheduling

Minimize
subject to
\Rows in the iis:

R10: C1 + C2 + C14 <= 10
\Columns in the iis:
Bounds
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• We’ve reversed the inequality! We should make sure we 
have more cops than the requirement, not less!

Bounds
C1 = 13
C2 >= 0
C14 >= 0

End



With the Fix, It Runs Fine

• Repair constraints and restore bounds:

SUBJECT TO

demand[s,t]:  {shift demand constraints}

cop[t]+cop[t-1]+ovr[s,t]  > REQ[s,t] ;

BOUNDS
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• And you get the optimal solution of $1185

cop[t]   <= MAXREQ; 
ovr[s,t] <= REQ[s,t];  

END



Other MPL Gotchas

• Pay attention to the unusual rules for formulas with 
parentheses (user manual, sec. 9.8)

• Be careful with set manipulations; lots of power 
available, lots of unintended effects possible

• Don’t start index names with a number and then append 
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• Don’t start index names with a number and then append 
letters (e.g, “12a”); MPL doesn’t like this

• I’m learning MPL as well; I’ll transmit more as the course 
goes along



Introduction to the Simplex Method

• By now, you suspect there is some algorithm for 
solving LPs
• Can’t use graphical methods in n-space
• CPLEX shows things like “Phase I” and “iterations”

• Dantzig (1947) developed original simplex method
• Implementation not really useable until mid-50’s
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• Implementation not really useable until mid-50’s
• Improvement has come from intense development of numerical 

linear algebra (plus many other tricks)

• Despite competition from interior-point schemes, the 
simplex method hangs on, because it’s:
• Fast
• Well-understood
• Has good restart properties (essential for IP)



Recall the Graphical Scheme

• We drew the 
feasible region, and 
then moved to 
objective function 
contour to the “best” 
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contour to the “best” 
extreme point
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Recall Also the Linear Algebra Ideas

• A typical LP is in this form:

• To get it into something that looks like a linear algebra 
problems, we add slack variables make the constraints 

0

 tosubject

 max

≥
≤
=

x

bAx

cxz
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problems, we add slack variables make the constraints 
equalities:

0

0

 tosubject

 max

≥
≥
=+
=

s

x

bsAx

cxz



Basic Solutions

• We know how to score any proposed solution
• The question is, how do we find solutions that obey the 
constraints?

• Terminology for the system Ax + s = b :
• n variables, m equations (constraints), assume n > m 
• Basic solution: a set of m variables that satisfies Ax+s=b ; the 
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• Basic solution: a set of m variables that satisfies Ax+s=b ; the 
others are set to 0 (note that a basic variable may be 0 also)

• Basic (nonbasic) variable : variable (not) in the basis
• Basic feasible solution: a basic solution that also satisfies the 

nonnegativity conditions x >0, s>0 
• Adjacent basic feasible solutions: solutions with m-1 basic 

variables in common



Bases and Extreme Points: Where to Look

• We’ve shown before that the optimal solution (if there 
is one) will occur at an extreme point

• It turns out that BFSs are, in fact, extreme points!
• So, all we have to do is search        possible bases!

• But doing it this way would be bad …










m

n
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• But doing it this way would be bad …
• n = 1000, m = 200 means 6.62 x 10215 possible bases
• Clearly, simplex is more efficient than that

• To build an algorithm, we need:
• A way to start
• A way to take improving steps
• A way to terminate with a guaranteed optimum (if problem is 

feasible)



Look Again at the Graphical LP
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• Suppose we start at 
(0,0)

• What’s the BFS, by the 
way?

• It’s s1 and s2

• We have two adjacent 
extreme points
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extreme points
• Which one would be the 

better one to move to?
• (0,6); why?

• Once we get to the best 
extreme point, how do 
we know we’re there?

• Convexity

Z=12
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How Do We Know That We’re Optimal?

• Here, we thought we 
were done, but there 
was a better point!

• What’s the problem with 
this feasible region?

• Not convex

OR 541 Fall 2009
Lesson 3-3, p. 7

0

1

2

3

4

5

0 1 2 3 4 5 6 7

x1

x2

Factory 1 Capacity Factory 2 Capacity

Factory 3 Capacity

Feasible region

• Not convex

• What LP assumption is 
violated?

• Linearity (in new constraint)

• So, we can guarantee that 
if all adjacent points are 
worse (or equal), we’re 
optimal!


